Dynamical Chiral Symmetry Breaking and Confinement: Its Interrelation and Effects on the Hadron Mass Spectrum

Mario Schröck in collaboration with L.Ya. Glozman and C.B. Lang

Rome, February 20, 2014

Outline

- Motivation and introduction
- Mesons under Dirac low-mode truncation
- Effects on the quark propagator
- Mesons: excited states
- Baryons: ground and excited states
- Summary

Motivation

- can confinement persist in a world without dynamical chiral symmetry breaking (DχSB)?
- which patterns exhibits the hadron spectrum in a chirally symmetric world?
- how important is DXSB for the mass of light hadrons?
- which role plays DχSB for the dynamics of quarks?

Reminder: chiral symmetry

 the QCD Lagrangian with two massless quark flavors is invariant under

$$SU(2)_A \times SU(2)_V \times U(1)_A \times U(1)_V$$

- $\mathrm{U}(1)_V$ conserves the baryon number
- $SU(2)_V$ is the isospin symmetry $(m_N \approx m_P)$
- $SU(2)_A$ is broken by the dynamics of QCD
- $\mathrm{U}(1)_A$ is broken dynamically and explicitly by the quantization of QCD (axial anomaly)

Chiral symmetry on the lattice

• a chirally symmetric Dirac operator must obey

$$\{D,\,\gamma_5\}=0$$

 No-go theorem: it is impossible to have a (naively) chirally invariant, doubler-free, local and translational invariant discretization of fermions on the lattice

[Nielsen, Ninomiya Phys. Lett. B 105 (1981) 219]

 way out: replace continuum condition with lattice version to obtain an exact formulation of chiral symmetry on the lattice (GW equation):

$$\{D,\,\gamma_5\} = aD\gamma_5D$$

The CI Dirac operator

- the chirally improved (CI) Dirac operator is an approximate solution to the GW equation
- it is obtained by expanding the most general Dirac operator in a basis of simple operators

$$D(x,y) = \sum_{i=1}^{16} c_{xy}^{(i)}(U)\Gamma_i + m_0$$

- inserting this into the GW eq. then turns into a system of coupled quadratic equations for the expansion coefficients $c_{xy}^{(i)}(U)$
- this expansion provides for a natural cutoff that turns the quadratic equations into a simple finite system.

 [Gattringer, Phys. Rev. D 63 (2001) 114501]

Eigenvalues of the Dirac operator

 the difference of left- and right-handed zero modes of the Dirac operator accounts for the topological charge which is responsible for the axial anomaly

[Atiyah, Singer, Ann. Math. 93 (1971) 139]

- the spectrum of non-GW fermions exhibits purely real modes which would be the zero modes
- the density of the smallest nonzero eigenvalues is related to the chiral condensate

$$\langle \overline{\psi}\psi\rangle = -\pi\rho(0)$$

"Unbreaking" chiral symmetry

 we subtract the Dirac low-mode contribution from the valence quark propagators

$$S_{\text{red}(k)} = S_{\text{full}} - \sum_{i=1}^{k} \mu_i^{-1} |w_i\rangle \langle w_i| \gamma_5$$

- $\mu_i, \; |w_i\rangle$ are the eigenvalues and vectors of the hermitian Dirac operator $D_5=\gamma_5 D$ and k denotes the truncation level
- this truncation corresponds to removing the chiral condensate of the valence quark sector by hand
- in the following we are going to perform a hadron spectroscopy with the truncated quark propagators

Hadron spectroscopy

on the lattice we study Euclidean correlation functions

$$\langle O(t) \overline{O}(0) \rangle = \sum_{j} \langle 0| \hat{O} |j\rangle \langle j| \hat{O}^{\dagger} |0\rangle e^{-tE_{j}}$$

$$= A e^{-tE_{0}} \left(1 + \mathcal{O}(e^{-t\Delta E}) \right)$$

• where *O* is an interpolating field with the quantum numbers of the state one is interested in, e.g., a pion:

$$O_{\pi}(n) = \overline{d}(n)\gamma_5 u(n)$$

ullet projection to zero momentum allows the identification of the exponential with the effective mass $m_{
m eff}(t)$

The variational analysis

• we collect different interpolators O_i describing the same state and define the cross correlation matrix

$$C_{ij}(t) \equiv \langle O_i(t) \overline{O}_j(0) \rangle$$

solving the generalized eigenvalue problem

$$C(t)\vec{v} = \lambda(t)C(t_0)\vec{v}$$

gives an estimate for the energies

$$\lambda_k(t) \sim e^{-tE_k} \left(1 + \mathcal{O}(e^{-t\Delta E_k}) \right)$$

 the eigenvectors indicate the overlap of different states

The setup

- we adopt 161 gauge field configurations with two flavors of degenerate CI fermions [Gattringer et al., PRD 79 (2009) 054501]
- pion mass $m_\pi = 322(5)\,\mathrm{MeV}$
- lattice size $16^3 \times 32$, lattice spacing $a=0.144(1)\,\mathrm{fm}$
- $L \cdot m_{\pi} \approx 3.75$
- Jacobi smeared "narrow" quark sources

Mesons under low-mode truncation

- we restrict ourselves to the study of isovector mesons (no need for disconnected diagrams)
- the following Dirac low-mode truncated meson correlators will be investigated:

$$\rho\left(1^{--}\right) \qquad \longleftrightarrow \qquad SU(2)_A \qquad \qquad a_1\left(1^{++}\right)$$

$$\pi \left(0^{-+}\right) \qquad \longleftarrow \qquad U(1)_A \qquad \qquad \qquad a_0 \left(0^{++}\right)$$

Pion low-modes only

[C.B. Lang, M.S., Phys. Rev. D **84** (2011) 087704]

- Low-mode contribution to the correlators for the $J^{PC}=0^{-+}$ sector in comparison to the correlators from full propagators
- ullet interpolators: (a) $ar u \gamma_5 d$ (b) $ar u \gamma_4 \gamma_5 d$

Pion without low-modes

[C.B. Lang, M.S., Phys. Rev. D 84 (2011) 087704]

- Low-mode truncated correlators of the $J^{PC}=0^{-+}$ sector in comparison to the correlators from full propagators
- interpolators: (a) $\bar{u}\gamma_5 d$ (b) $\bar{u}\gamma_4\gamma_5 d$

Pion without low-modes

[C.B. Lang, M.S., Phys. Rev. D **84** (2011) 087704]

- Low-mode truncated effective masses of the $J^{PC}=0^{-+}$ sector in comparison to the eff. masses from full propagators
- ullet interpolators: (a) $ar u \gamma_5 d$ (b) $ar u \gamma_4 \gamma_5 d$

Rho without low-modes

[C.B. Lang, M.S., Phys. Rev. D **84** (2011) 087704]

- Low-mode truncated correlators of the $J^{PC}=1^{--}$ sector in comparison to the correlators from full propagators
- ullet interpolators: (c) $ar u \gamma_i d$ (d) $ar u \gamma_4 \gamma_i d$

Rho without low-modes

[C.B. Lang, M.S., Phys. Rev. D 84 (2011) 087704]

- Low-mode truncated effective masses of the $J^{PC}=1^{--}$ sector in comparison to the eff. masses from full propagators
- interpolators: (c) $\bar{u}\gamma_i d$ (d) $\bar{u}\gamma_4\gamma_i d$

a_0 and a_1 without low-modes

[C.B. Lang, M.S., Phys. Rev. D 84 (2011) 087704]

- Low-mode truncated correlators of the $J^{PC}=0^{++},1^{++}$ sector in comparison to the correlators from full propagators
- interpolators: (e) $\bar{u}d$ (f) $\bar{u}\gamma_i\gamma_5d$

a_0 and a_1 without low-modes

[C.B. Lang, M.S., Phys. Rev. D **84** (2011) 087704]

- Low-mode truncated effective masses of the $J^{PC}=0^{++},1^{++}$ sector in comparison to the eff. masses from full propagators
- interpolators: (e) $\bar{u}d$ (f) $\bar{u}\gamma_i\gamma_5d$

Meson mass evolution

[C.B. Lang, M.S., Phys. Rev. D 84 (2011) 087704]

- degeneracy of rho and a_1 : restoration of the chiral symmetry
- fate of $U(1)_A$ unclear
- mesons masses are growing with the truncation level

Quark propagator

- we study the (Landau gauge) quark propagator to shed light on the origin of the large meson mass upon Dirac low-mode reduction
- the renormalized quark propagator has the form

$$S(\mu; p^2) = (ipA(\mu; p^2) + B(\mu; p^2))^{-1} = \frac{Z(\mu; p^2)}{ip + M(p^2)}$$

• we extract the wavefunction renormalization function $Z(\mu;p^2)$ and the mass function $M(p^2)$ from the lattice and study their evolution under lowmode truncation

Lattice gauge fixing on GPUs

- our culGT code supports Landau, Coulomb and maximally Abelian gauge fixing on multi-GPUs
- the "mephisto" cluster: five nodes, each node four NVIDIA Tesla C2070 GPUs and two Intel Xeon Six-Core Westmere CPUs @ 2.67GHz with FermiQCD
- ullet code performance: one GPU $\,\sim$ 470 CPU cores

[M.S., H.Vogt, Comp. Phys. Commun. 184 (2013) 1907-1919]

Truncated quark propagator

[M.S., Phys. Lett. B 711 (2012) 217-224]

- $\bullet \;\;$ flattening of $M(p^2) \;\Longleftrightarrow \;$ vanishing of $\langle\, \overline{\psi}\psi\,\rangle$
- $Z(p^2)|_{p\ll 1} \to 0 \iff S(p^2)|_{p\ll 1} \to 0$:

suppression of low momentum quarks

Dirac modes and quark momenta

 the eigenvalues of the free Dirac operator can be derived analytically

$$\lambda = s \pm i |k|$$

- where s(p) denotes the scalar part of the Dirac operator and k(p) are the lattice momenta
- setting the small eigenvalues to zero makes the low momentum states imaginary and thus unphysical

Increased quark momenta

- i. explains growing of meson masses
- ii. chiral restoration in mesons is partially effective: compare chiral restoration in mesons with vanishing of the chiral condensate:

Variational analysis: mesons

- we extend our study by adopting different quark source smearings (Jacobi smearing "wide" and "narrow" and a derivative source)
- the variational method than allows the extraction of excited states
- derivative source crucial for tensor meson b_1 , which would-be connected via

Truncation k = 64 of ρ (1⁻⁻)

Correlators (eigenvalues) of all states

Effective masses of lowest two states

Eigenvectors of ground state

Eigenvectors of first excited state

Low-mode truncated $a_1(1^{++})$

Correlators (eigenvalues), k=4

Effective masses of ground state

Correlators (eigenvalues), k=64

Effective masses of ground state

Low-mode truncated $b_1(1^{+-})$

Correlators (eigenvalues), k=2

Effective masses of ground state

Correlators (eigenvalues), k=128

Effective masses of ground state

Meson mass evolution

- degeneracy of two lowest rho states
- b_1 mass remains larger then rho mass: single flavor axial symmetry remains broken

Newest overlap results

- exact chiral symmetry on the lattice
- in contrast to Cl results: reveals restoration of $\mathrm{U}(1)_A$

[M. Denissenya, L.Ya. Glozman, C.B. Lang, arXiv:1402.1887]

Variational analysis: baryons

- ullet we study the nucleon and Δ ground and first excited state of positive and negative parity
- can we find parity doubling?
- what happens to the N- Δ splitting?

Truncation k = 20 of $N(1/2^+)$

Correlators (eigenvalues) of all states

Effective masses of lowest two states

Eigenvectors of ground state

Eigenvectors of first excited state

Truncation k = 64 of $N(1/2^-)$

Correlators (eigenvalues) of all states

Effective masses of lowest two states

Eigenvectors of ground state

Eigenvectors of first excited state

Truncation k = 128 of $\Delta(1/2^+)$

Correlators (eigenvalues) of all states

Effective masses of lowest two states

Eigenvectors of ground state

Eigenvectors of first excited state

Truncation k=16 of $\Delta(1/2^-)$

Correlators (eigenvalues) of all states

Effective masses of lowest two states

Eigenvectors of ground state

Eigenvectors of first excited state

Baryon mass evolution

- ullet parity doubling in the $J=1/2\,$ and $J=3/2\,$ channels
- degeneracy of nucleon ground and exited states
- splitting of Δ ground vs. excited state remains: persistence of confinement

Locality properties

 to what extent is the locality of the low-mode truncated Dirac operator violated?

$$\psi(x)^{[x_0,\alpha_0,a_0]} = \sum_{y} D_5(x,y) \,\eta(y)^{[x_0,\alpha_0,a_0]}$$

$$f(r) = \max_{x, \alpha_0, a_0} \{ \|\psi(x)\| \mid \mathbf{1} \ x \, \mathbf{1} = r \}$$

(non)locality of the overlap operator

[Hernandez et al., Nucl. Phys. B **552** (1999) 363–378]

Summary

We removed the lowest lying Dirac eigenmodes of the valence quark sector and found the following effects thereupon

- on the quarks:
 - vanishing of the dynamically generated mass
 - no effect on the bare quark mass
 - increasing of the quark momenta
- ♦ on the hadron masses:
 - hadron mass increases with the truncation level, due to the increased quark momenta

- on the hadron spectrum:
 - persistence of confinement
 - restoration of chiral symmetry
 - no restoration of $\mathrm{U}(1)_A$

Appendix

Baryon interpolators

$$N^{(i)} = \epsilon_{abc} \, \Gamma_1^{(i)} \, u_a \, \left(u_b^T \, \Gamma_2^{(i)} \, d_c - d_b^T \, \Gamma_2^{(i)} \, u_c \right) ,$$

$$\Delta_k = \epsilon_{abc} \, u_a \, \left(u_b^T \, C \, \gamma_k \, u_c \right)$$

$\chi^{(i)}$	$\Gamma_1^{(i)}$	$\Gamma_2^{(i)}$	smearing	$\#_N$
$\chi^{(1)}$	1	$C\gamma_5$	(nn)n	1
			(nn)w	2
			(nw)n	3
			(nw)w	4
			(ww)n	5
			(ww)w	6
$\chi^{(2)}$	γ_5	C	(nn)n	7
			(nn)w	8
			(nw)n	9
			(nw)w	10
			(ww)n	11
			(ww)w	12
$\chi^{(3)}$	i1	$C \gamma_t \gamma_5$	(nn)n	13
			(nn)w	14
			(nw)n	15
			(nw)w	16
			(ww)n	17
			(ww)w	18

smearing	#_\Delta
$\overline{(nn)n}$	1
(nn)w	2
(nw)n	3
(nw)w	4
(ww)n	5
(ww)w	6

Meson interpolators

$\overline{\hspace{1cm}\#_{ ho}}$	interpolator(s)		
1	$\overline{a}_n \gamma_k b_n$		
8	$\overline{a}_w \gamma_k \gamma_t b_w$		
12	$\overline{a}_{\partial_k}b_w - \overline{a}_wb_{\partial_k}$		
17	$\overline{a}_{\partial_i}\gamma_k b_{\partial_i}$		
22	$ \overline{a}_{\partial_k} \varepsilon_{ijk} \gamma_j \gamma_5 b_w - \overline{a}_w \varepsilon_{ijk} \gamma_j \gamma_5 b_{\partial_k} $		
$\#_{a_1}$	interpolator(s)		
1	$\overline{a}_n \gamma_k \gamma_5 b_n$		
2	$\overline{a}_n \gamma_k \gamma_5 b_w + \overline{a}_w \gamma_k \gamma_5 b_n$		
4	$\overline{a}_w \gamma_k \gamma_5 b_w$		
$\overline{\#_{b_1}}$	interpolator(s)		
6	$\overline{a}_{\partial_k}\gamma_5 b_n - \overline{a}_n \gamma_5 b_{\partial_k}$		
8	$\overline{a}_{\partial_k}\gamma_5 b_w - \overline{a}_w \gamma_5 b_{\partial_k}$		