
Mario Schröck
Bonn, May 28, 2015

QUDA and QPhiX interfaces for tmLQCD

Motivation

Galileo @ Cineca

• 516 compute nodes:

• two octa-core Intel Xeon Haswell CPUs
(E5-2630 v3 @ 2.40GHz) per node

• 128 GB RAM per node

• two 16GB Intel Xeon-Phi 7120P (MIC)
on 384 nodes

• two 24GB NVIDIA K80 GPUs on 40
nodes

• ≳ one Petaflop

we want to use this machine for propagator calculations!

Galileo performance for (tm)LQCD

• tmLQCD mixed prec. CG-eo on CPU

• best performance: one MPI proc./core: 27 Gflops

• 516 CPUs x 27 Gflops (naiv scaling)

• compare to Fermi BlueGene/Q

• 10.240 nodes x ~50 Gflops (ideal 12^4 local lattice)

1.4%
25.6%

Galileo: 1Pflops Fermi: 2 Pflops

Intel Xeon Phi 7120P

• 61 cores

• 4 threads/core

• 512-bit SIMD vector
unit/core

• 512KB L2 cache/core

Can we run tmLQCD natively on MIC?

• 1 MPI proc., 244 OMP threads: 20.8 Gflops

• 2 MPI proc., 122 OMP threads: 24.1 Gflops

• 4 MPI proc., 61 OMP threads: 26.0 Gflops

• 16 MPI proc., 15 OMP threads: 29.4 Gflops

Yes, simply cross-compile with flag -mmic:

Performance comparable to CPU but only 1/16
of the accounting costs (Cineca policy)!

Galileo performance for tmLQCD

• including native runs on MIC (768 devices)

1.4%

Galileo: 1Pflops

2,3%

Interfaces for tmLQCD

Interfaces for tmLQCD

• own code for various types of hardware is difficult
to maintain

• a lot of manpower has been put into libraries like
QUDA, hard to compete with those

• easy to test correctness of inverter results from
external libraries

QPhiX: QCD for Intel Xeon (Phi) processors

• Wilson

• Clover-improved Wilson

• Twisted mass (with Alexei Strelchenko)

(first release 09/2014) offers Dirac operators and
solvers for:

Original Authors:

• Balint Joo (Jefferson Lab)

• D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy (Intel
Parallel Computing Labs)

QUDA: A library for QCD on GPUs

• Wilson

• Clover-improved Wilson

• Twisted mass (including non-deg. doublets)

• Twisted mass with clover term

• Staggered fermions and Asqtad/HISQ

• Domain wall (4-d or 5-d preconditioned)

• Mobius fermions

QUDA (first release 2009) is leveraging NVIDIA's
CUDA platform, is 4D MPI parallel and it includes

optimized Dirac operators and solvers for:

QUDA Authors

Ronald Babich (NVIDIA)
Kipton Barros (Los Alamos National Laboratory)

Richard Brower (Boston University)
Mike Clark (NVIDIA)

Justin Foley (University of Utah)
Joel Giedt (Rensselaer Polytechnic Institute)

Steven Gottlieb (Indiana University)
Balint Joo (Jefferson Laboratory)

Claudio Rebbi (Boston University)
Guochun Shi (NCSA)

Alexei Strelchenko (Fermi National Laboratory)
Alejandro Vaquero (INFN Sezione Milano Bicocca)

Mathias Wagner (Indiana University)

Interface design goals

1. Safety. Final residual always checked by tmLQCD

2. Ease of use. Set flag UseQudaInverter in input file

3. Minimality. Single separate file + few #ifdef QUDA

4. Performance. Will not be 100% by default due to (1.)

For implementation details see the
tmLQCD documentation!

(currently only in my fork)

Installation & Usage

Installation

• QUDA can be installed without any dependencies

• configure tmLQCD with three additional settings:

./configure CC=mpicc \
--prefix=$TMLQCDDIR \
--with-limedir=$LIMEDIR \
--with-lapack=<linker-flags> \
--enable-mpi \
--with-mpidimension=4 \
CXX=mpiCC \
--with-qudadir=$QUDADIR \
--with-cudadir=${CUDADIR}/lib

Note that a C++ compiler is required for linking against the QUDA library,
therefore set CXX appropriately. $QUDADIR is where you installed QUDA in
the previous step and $CUDADIR is required again for linking.

5.1.3 Usage

Any main program that reads and handles the operator declaration from
an input file can easily be set up to use the QUDA inverter by setting the
UseQudaInverter flag to yes. For example, in the input file for the invert
executable, add the flag to the operator declaration as

BeginOperator TMWILSON
2kappaMu = 0.05
kappa = 0.177
UseEvenOdd = yes
Solver = CG
SolverPrecision = 1e-14
MaxSolverIterations = 1000
UseQudaInverter = yes

EndOperator

and the operator of interest will be inverted using QUDA. The initialization
of QUDA is done automatically within the operator initialization, the QUDA
library should be finalized by a call to endQuda() just before finalizing MPI.
When you use the QUDA interface for work that is being published, don’t
forget to cite [24, 25, 26].

5.1.4 Functionality

The QUDA interface can currently be used to invert TMWILSON, WILSON,
DBTMWILSON and CLOVER within a 4D multi-GPU (MPI) parallel environment

53

Usage example
• run the invert executable and adjust the

operator(s) in the input file:

./configure CC=mpicc \
--prefix=$TMLQCDDIR \
--with-limedir=$LIMEDIR \
--with-lapack=<linker-flags> \
--enable-mpi \
--with-mpidimension=4 \
CXX=mpiCC \
--with-qudadir=$QUDADIR \
--with-cudadir=${CUDADIR}/lib

Note that a C++ compiler is required for linking against the QUDA library,
therefore set CXX appropriately. $QUDADIR is where you installed QUDA in
the previous step and $CUDADIR is required again for linking.

5.1.3 Usage

Any main program that reads and handles the operator declaration from
an input file can easily be set up to use the QUDA inverter by setting the
UseQudaInverter flag to yes. For example, in the input file for the invert
executable, add the flag to the operator declaration as

BeginOperator TMWILSON
2kappaMu = 0.05
kappa = 0.177
UseEvenOdd = yes
Solver = CG
SolverPrecision = 1e-14
MaxSolverIterations = 1000
UseQudaInverter = yes

EndOperator

and the operator of interest will be inverted using QUDA. The initialization
of QUDA is done automatically within the operator initialization, the QUDA
library should be finalized by a call to endQuda() just before finalizing MPI.
When you use the QUDA interface for work that is being published, don’t
forget to cite [24, 25, 26].

5.1.4 Functionality

The QUDA interface can currently be used to invert TMWILSON, WILSON,
DBTMWILSON and CLOVER within a 4D multi-GPU (MPI) parallel environment

53

• supported operators:  
TMWILSON, WILSON, DBTMWILSON, CLOVER

• supported inverters:  
mixed prec. CG-eo, BICGSTAB, (eigCG, DD-
precond. GCR, multigrid(?))

Performance

Performance per CPU, GPU, MIC
G

flo
ps

0

100

200

300

400 398

183

125

27

tmLQCD on CPU QPhiX on CPU QPhiX on MIC QUDA (K80)

Accounting costs / flop
co

re
 s

ec
 /

G
flo

p

0

0.15

0.3

0.45

0.6

0.0030.005

0.128

0.593

tmLQCD on CPU QPhiX on CPU QPhiX on MIC QUDA (GPU)

QPhiX on MIC (Quda on GPU) reduces accounting costs to 9‰ (4‰)!

Galileo performance with Quda/QPhiX interfaces

6.4%

14.1%
3.2%

GPU with Quda
MIC with QPhiX
CPU with QPhiX
1 Pflops

1.4%

Galileo: 1Pflops

Increasing the performance by 17x while leaving the
accounting costs the same!

Scaling

Quda strong scaling (K20)

 0

 100

 200

 300

 400

 500

1 2 4 8 16

Su
st

ai
ne

d
G

Fl
op

s
/ D

ev
ic

e

Number of GPUs

323x64
483x96

QPhiX weak scaling

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.5 1 2 4 8 16

Su
st

ai
ne

d
G

Fl
op

s
/ n

od
e

Number of nodes

MIC
CPU

local lattice size: 32³ x 32

Thomas Jefferson National Accelerator Facility

Weak Scaling on Stampede
• Without proxy!
- drop in performance when going to

multiple nodes!

- performance halves when
introducing second comms
direction!

- suggests issue is with async
progress rather than attainable
bandwidth or latency!

• With proxy!
- small drop in performance from 1

to 2D comms. More likely due to B/
W constraints...!

• Dslash scaled to 31 TF on 128
nodes (CG to 16.8 TF) 1 2 4 8 16 32 64 128

number of nodes
0

50

100

150

200

250

300

G
FL

O
PS

 p
er

 N
od

e

Without Proxy
With CML Proxy

Wilson Dslash, Weak Scaling, 48x48x24x64 sites per node, single precision

Communication in
1 dimension

Communication in 2 dimensions

31 TF !!

© Balint Joo:

QPhiX strong scaling on CPU

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 4 8 16

G
Fl

op
s

Number of nodes

Sustained GFlops
Sustained GFlops / node

global lattice size: 64³ x 128

Summary
• hybrid machines require optimized code

• difficult to maintain own tmLQCD optimized code
for various architectures

• outsource development of optimized code where
appropriate (inverters) and use interfaces

• with Quda and QPhiX interfaces we reach ~25%
of the peak performance on Galileo

• scaling not perfect, use only as many nodes as
necessary to fit the problem

Current status
• QUDA

 invert executable for Wilson, Clover, TM, TM-Clover, TM-
nondeg. doublets with (mixed precision) CG-eo, BiCGStab

TM-nondeg. doublet with Clover term (missing on Quda
side)

 interface finished, pull-request opened.

• QPhiX

 invert executable for Wilson, Clover, TM with (mixed
precision) CG-eo, BiCGStab

TM-Clover, TM-doublets

interface to be finished within the next weeks.

Thanks for your
attention!

And special thanks go to

Mike Clark, Balint Joo, Alexei Strelchenko and Alejandro Vaquero

for help with Quda and QPhiX.

