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Motivation

Can confinement persist in a 
world without dynamical chiral 

symmetry breaking?



Eigenvalues of the Dirac operator

• the difference of left- and right-handed zero modes 
of the Dirac operator accounts for the topological 
charge which is responsible for the axial anomaly  

• the density of the smallest nonzero eigenvalues is 
related to the chiral condensate

h  i = �⇡⇢(0)

[Atiyah, Singer,  Ann. Math. 93 (1971) 139] 

[Banks, Casher, Nucl. Phys. B 169 (1980) 103]



Artificially restoring chiral symmetry

• we subtract the Dirac low-mode contribution 
from the valence quark propagators

•               are the eigenvalues and vectors of the 
hermitian Dirac operator                    and     
denotes the truncation level

µi, |wii
D5 = �5D k

• this truncation corresponds to removing the chiral 
condensate of the valence quark sector by hand

Sred(k) = Sfull �
kX

i=1

µ�1
i |wii hwi| �5
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Locality
• to what extent is the locality of the low-mode 

truncated Dirac operator violated?

Fig. 1. Expectation value of f(r) [eq. (3.3)] as a function of the distance r. Open

symbols correspond to s = 0 while the filled symbols represent the data at s = 0.4

(β ≤ 6.2) and s = 0.2 (β = 6.4) respectively. The statistical errors are not visible on

the scale of this plot.

as discussed below they can be calculated reliably with a modest effort. A technical
point we wish to emphasize is that the relatively high numerical precision quoted
above is required to avoid systematic effects in the calculated values of f(r) at large
distances.

In all cases considered ⟨f(r)⟩ is rapidly decaying when the distance r increases.
Finite-volume effects appear to be negligible here and significant differences between
the curves at different β and s are only seen when r/a is larger than 10 or so. For
r/a > 13 the data can be represented by a single exponential,

⟨f(r)⟩ ∝ e−νr/a, (3.4)

with exponents ν as listed in table 1. One may be worried at this point that the
fluctuations of f(r) are large, but our experience is that the mean deviations are at

9

(non)locality of the 
overlap operator

[Hernandez, Jansen, Lüscher, 
Nucl. Phys. B 552 (1999)]

 (x)[x0,↵0,a0] =
X

y

D5(x, y) ⌘(y)
[x0,↵0,a0]

f(r) = max

x,↵0,a0

{k (x)k | >>x

>>
= r}



Rho without low-modes: eff. masses

• Low-mode truncated effective masses of the JPC =    
0−            + sector in comparison to the eff. 
masses from full propagators

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10
t

(c)

full
red5(4)

red5(16)
red5(32)
red5(64)

JPC = 1��



• Low-mode truncated effective mass of the axial 
vector current

a  without low-modes
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Meson mass evolution

a1• degeneracy of rho and    : restoration of the chiral symmetry
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[C.B. Lang, M.S., Phys. Rev. D 84 (2011) 087704]



Hadrons under low mode truncation

• isovectors

• baryons 

• with overlap quarks (Nf=2)

• isoscalars  
7
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FIG. 10: Mass evolution of J = 1 mesons on exclusion of the quasi-zero modes. The value � denotes the energy gap.
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mix the components of the fundamental four-component
vector (u

L

, u

R

, d

L

, d

R

). The high degeneracy of the en-
ergy levels and the SU(4) symmetry imply absence of
a color-magnetic field in the system and could be inter-
preted as a manifestation of a dynamical string in QCDr

.

IV. CONCLUSION

We have studied all possible q̄q, J = 0, 1 mesons in
a dynamical lattice simulation with the manifestly chi-
rally invariant overlap Dirac operator and their behav-
ior upon reduction of the lowest-lying eigenmodes of the
Dirac operator from the valence quark propagators. In
the ⇡,�, a0, ⌘ channels (J = 0) we observe a simulta-
neous restoration of both chiral and U(1)

A

symmetries:
All possible point-to-point correlators become identical.
The ground states of ⇡,�, a0, ⌘ mesons do not survive the
unbreaking, however. They disappear from the physical
spectrum of the bound states, because the corresponding
correlation functions decay faster than an exponent.

In the J = 1 channels we find in contrast a very clean
exponential decay of the correlators. Consequently, the
J = 1 states survive the unbreaking of the chiral symme-
try. After removal of the quasi-zero modes their masses
become manifestly chirally symmetric.
In the present case we also have evidence of a simulta-

neous restoration of both SU(2)
L

⇥ SU(2)
R

and U(1)
A

symmetries, like in the J = 0 channels. In the J = 1
channels we clearly see a degeneracy of all eight possible
mesons, which signals a restoration of the higher symme-
try, the SU(4). The latter symmetry is not a symmetry
of the QCD Lagrangian, but is an emergent symmetry
that appears from the QCD dynamics upon removal of
the close-to-zero Dirac modes. It operates only in J � 1
mesons. This symmetry suggests an absence of a color-
magnetic field and can be interpreted as a symmetry of
a dynamical string in QCDr .

Appendix A: Correlation functions

In this section we present an outline of the meson two-
point correlation function computation with stochastic
estimation techniques. Here is a list of quark vectors
representing quark sources and solution vectors according
to [12, 23],

{v
k

} =
n

u1, u2, ..., uNe , x1, ..., xNd

o

{w
k

} =
n

u1

�1
,

u2

�2
, ...,

u

Ne

�

Ne

, P

l

⌘1, ..., Pl

⌘

Nd

o

,

(A1)

where u

k

are N

e

= 100 low-lying modes and ⌘

Nd single
Z(2) noise vector for each configuration. These are di-
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[Glozman, Lang, M.S., Phys. Rev. D 86 (2012)]

[Denissenya, Glozman, Lang, Phys. Rev. D 89 (2014)]

[Denissenya, Glozman, Lang, arXiv:1410.8751]

[C.B. Lang, M.S., Phys. Rev. D 84 (2011)]

➜ restoration of chiral and U(1) axial symmetry



So chiral symmetry is restored… 
but what happens to 

confinement?



Quark confinement is the non-
existence of single quark entities 

in the physical spectrum.



Quarks in Coulomb gaugeQuarks in Coulomb Gauge 

4

S�1(p, p4) = i�ipiAs(p) + i�4p4At(p) + �4p4�ipiAd(p) +B(p)

spatial temporal mixed scalar

p4

M(p) =
B(p)

A(p)

Quark Propagator has four independent dressing functions

All dressing functions seem to be independent of 

Mixed component seems to vanish non-perturbatively

Spatial and scalar components seem to diverge in the infrared

Dynamical quark mass is finite in the infrared, cancellation of divergencies



Quark confinement in Coulomb gauge

6

Quark Confinement in Coulomb Gauge 

As(p)

p4

Divergence of                  in the infrared leads to quark confinement 

Explanation: Integrate free quark propagator over  

S(p) =

Z
dp4
2⇡

1

i� · p+ i�4p4 +m0
=

m0 � i� · p
2!(p)

!(p) =
p
p2 +m2 dispersion relation for free quark

Perform same integration over non-perturbative quark propagator  

S(p) =
B(p)� i� · pAs(p)

2!(p)

!(p) = At(p)As(p)
p
p2 +M2(p) dispersion relation for confined quark



Massless overlap propagatorMassless Overlap Quark Propagator 

Massless Overlap Dirac operator: D(0) = ⇢ (1 + �5sign [HW(�⇢)])

Fullfills Ginsparg-Wilson equation: {D(0), �5} =
1

⇢
D(0)�5D(0)

Free massless Overlap quark propagator: 

S(0)(p) = �i�µCµ(p) +
1

2⇢
, Cµ(p) =

1

2⇢

kµq
k2µ +A2 +A

, A =
1

2
k̂2µ � a⇢

Basic step to make contact with continuum quark propagator: 

eS = S � 1

2⇢
=) {eS, �5} = 0

13



Massive overlap propagatorMassive Overlap Quark Propagator

Massive Overlap Dirac operator: D(m0) =

✓
1� m0

2⇢

◆
D(0) +m0

Free massive Overlap quark propagator: 
⇣
S(0)

⌘�1
(p) = i�µqµ +m

Identify Overlap lattice momenta       and current quark mass  qµ m

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8

q(
p2 ) [

G
eV

]

p [GeV]

m=0.0802 GeV
m=0.0932 GeV
m=0.1630 GeV

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  1  2  3  4  5  6  7  8

M
(p

2 ) [
G

eV
]

p [GeV]

m=0.0802 GeV
m=0.0932 GeV
m=0.1630 GeV

14

m =
m0

1�m0/2⇢

No tree-level corrections!



Lattice setup

Lattice Setup II

Quenched Lüscher-Weisz gauge field configruations  on                     lattice                                   
with                   fm 

Gauge configurations fixed to Coulomb gauge; residual gauge freedom fixed           
to Integrated Polyakov gauge 

Up to now 96 configurations used                       

We compute five partially quenched masses again   

Wilson-Dirac mass parameter  

To improve condition number, 140 low modes of kernel operator computed        
exactly  

Note: much more low modes of kernel operator than for the dynamical                
JLQCD configurations                        

20⇥ 20
a = 0.2

⇢ = 1.6

Lattice Setup II

Quenched Lüscher-Weisz gauge field configruations  on                     lattice                                   
with                   fm 

Gauge configurations fixed to Coulomb gauge; residual gauge freedom fixed           
to Integrated Polyakov gauge 

Up to now 96 configurations used                       

We compute five partially quenched masses again   

Wilson-Dirac mass parameter  

To improve condition number, 140 low modes of kernel operator computed        
exactly  

Note: much more low modes of kernel operator than for the dynamical                
JLQCD configurations                        

20⇥ 20
a = 0.2

⇢ = 1.6

effect of dynamical quarks on Coulomb gauge quark propagator small

Lattice Setup II

Quenched Lüscher-Weisz gauge field configruations  on                     lattice                                   
with                   fm 

Gauge configurations fixed to Coulomb gauge; residual gauge freedom fixed           
to Integrated Polyakov gauge 

Up to now 96 configurations used                       

We compute five partially quenched masses again   

Wilson-Dirac mass parameter  

To improve condition number, 140 low modes of kernel operator computed        
exactly  

Note: much more low modes of kernel operator than for the dynamical                
JLQCD configurations                        

20⇥ 20
a = 0.2

⇢ = 1.6
[Burgio, M.S., Reinhardt, Quandt, Phys. Rev. D 86 (2012)]



cuLGT: gauge fixing on GPUs
[M.S., H. Vogt, Comp. Phys. Commun. 184 (2013) 1907-1919]

cuLGT2: Performance on different GPUs
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MultiGPU: strong scaling
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code available: www.culgt.com and github.com/culgt 

> 80% of max. bandwidth throughput 

single GPU strong scaling

http://www.culgt.com
http://github.com/culgt


Scalar component
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Quarks in Coulomb Gauge 

4

S�1(p, p4) = i�ipiAs(p) + i�4p4At(p) + �4p4�ipiAd(p) +B(p)

spatial temporal mixed scalar

p4

M(p) =
B(p)

A(p)

Quark Propagator has four independent dressing functions

All dressing functions seem to be independent of 

Mixed component seems to vanish non-perturbatively

Spatial and scalar components seem to diverge in the infrared

Dynamical quark mass is finite in the infrared, cancellation of divergencies



Mixed component
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Temporal component
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Spatial component
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Mass function
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Dynamical mass & effect of low mode removal
Dynamical Mass  & Effect of Low-Mode Removal 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5  6

M
(p

2 ) [
G

eV
]

|q| [GeV]

16x32

full
k=16
k=32
k=64
k=96
k=128

Dynamical quark mass approaches current quark mass in IR after removing       
enough modes 

Enhancement arount 1 GeV

Goes to current quark mass in UV

Not enough IR points

preliminary



Spatial component & effect of low mode Spatial Component & Effect of Low-Mode Removal
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Summary & Conclusions

• we removed the lowest Dirac eigenmodes 
from valence quark propagators

• the meson spectrum and the quark mass 
function show that chiral symmetry gets 
restored

• the quark energy dispersion relation seems 
to remain IR divergent

• we have strong hints that confinement 
survives the restoration of chiral symmetry.



Appendix



[Glozman, Lang, M.S., Phys. Rev. D 86 (2012) 014507]
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Pion low-modes only

• Low-mode contribution to the correlators for the 
JPC =    0−+ sector in comparison to the 
correlators from full propagators

• interpolators: (a) uγ5d,  (b) uγ4γ5d.

JPC = 0�+

ū�5d ū�4�5d
pion strongly dominated by low-modes


