

Overlap quark propagator in Coulomb gauge: chiral symmetry breaking and confinement

Mario Schröck
in collaboration with
Ydalia Delgado and Markus Pak (Uni Graz)

Odense, December 12, 2014

Outline

- Motivation
- Introduction
 - Dirac low-modes
 - Hadrons under low-mode truncation
- Coulomb gauge and confinement
- Overlap quark propagator
- Conclusions

Motivation

Can confinement persist in a world without dynamical chiral symmetry breaking?

Eigenvalues of the Dirac operator

• the difference of left- and right-handed zero modes of the Dirac operator accounts for the *topological* charge which is responsible for the axial anomaly

[Atiyah, Singer, Ann. Math. 93 (1971) 139]

 the density of the smallest nonzero eigenvalues is related to the chiral condensate

$$\langle \overline{\psi}\psi\rangle = -\pi\rho(0)$$

[Banks, Casher, Nucl. Phys. B 169 (1980) 103]

Artificially restoring chiral symmetry

 we subtract the Dirac low-mode contribution from the valence quark propagators

$$S_{\text{red}(k)} = S_{\text{full}} - \sum_{i=1}^{k} \mu_i^{-1} |w_i\rangle \langle w_i| \gamma_5$$

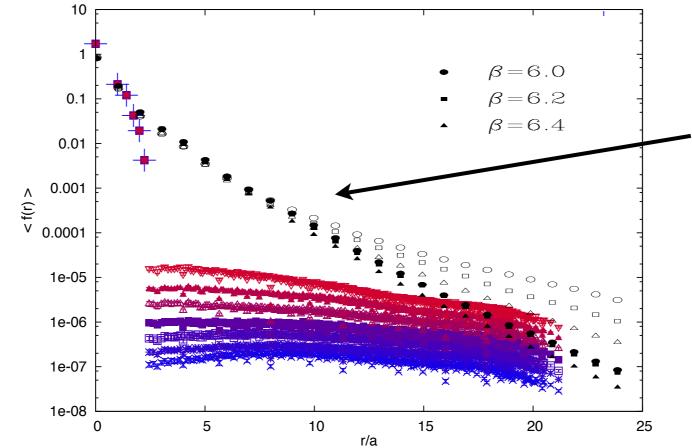
- $\mu_i, \; |w_i\rangle$ are the eigenvalues and vectors of the hermitian Dirac operator $D_5=\gamma_5 D$ and k denotes the truncation level
- this truncation corresponds to removing the chiral condensate of the valence quark sector by hand

Locality

 to what extent is the locality of the low-mode truncated Dirac operator violated?

$$\psi(x)^{[x_0,\alpha_0,a_0]} = \sum_{y} D_5(x,y) \,\eta(y)^{[x_0,\alpha_0,a_0]}$$

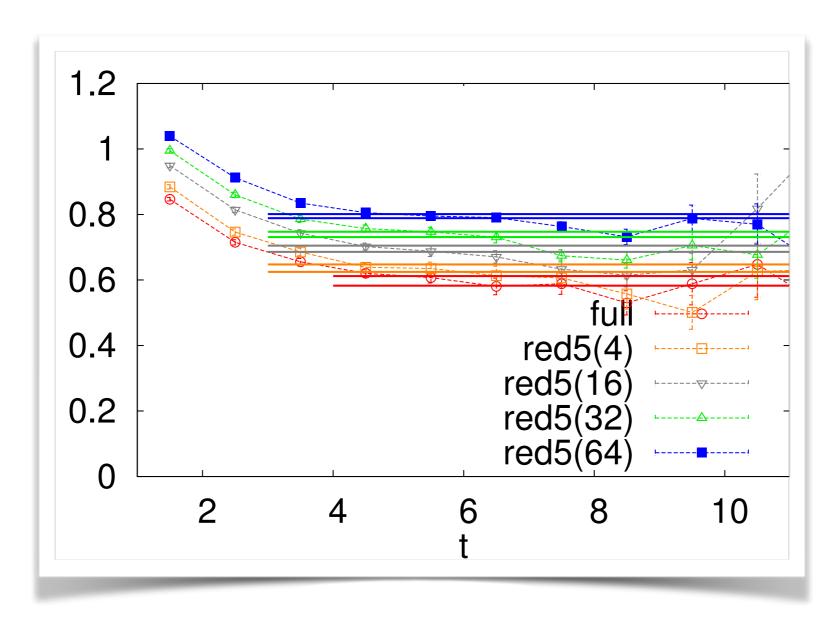
$$f(r) = \max_{x, \alpha_0, a_0} \{ \|\psi(x)\| \mid \mathbf{1} \ x \, \mathbf{1} = r \}$$



(non)locality of the overlap operator

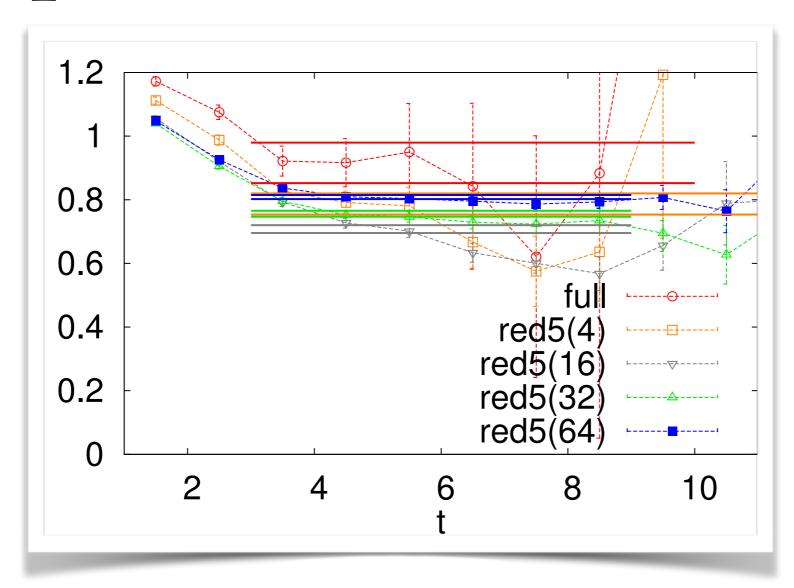
[Hernandez, Jansen, Lüscher, Nucl. Phys. B **552** (1999)]

Rho without low-modes: eff. masses



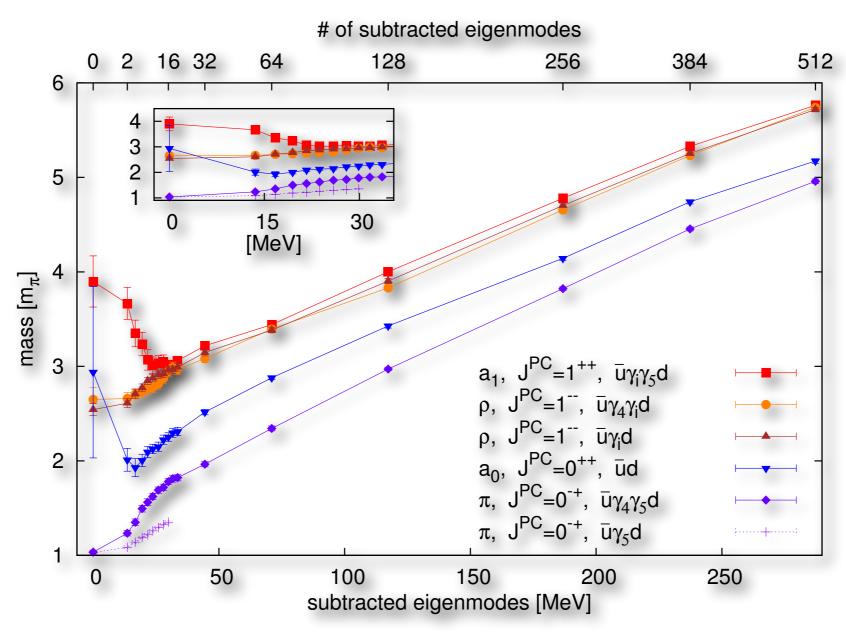
• Low-mode truncated effective masses of the $J^{PC}=1^{--}$ sector in comparison to the eff. masses from full propagators

a_1 without low-modes



 Low-mode truncated effective mass of the axial vector current

Meson mass evolution

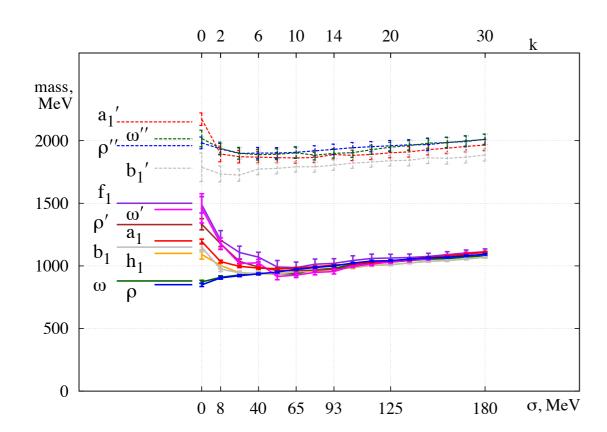


[C.B. Lang, M.S., Phys. Rev. D 84 (2011) 087704]

• degeneracy of rho and a_1 : restoration of the chiral symmetry

Hadrons under low mode truncation

- isovectors [C.B. Lang, M.S., Phys. Rev. D 84 (2011)]
- baryons [Glozman, Lang, M.S., Phys. Rev. D 86 (2012)]
- with overlap quarks (Nf=2) [Denissenya, Glozman, Lang, Phys. Rev. D 89 (2014)]
- isoscalars [Denissenya, Glozman, Lang, arXiv:1410.8751]



$$(0,0): \qquad f_1 \qquad SU(2)_L \times SU(2)_R \qquad \omega'$$

$$(\frac{1}{2}, \frac{1}{2})_a: \qquad b_1 \qquad \downarrow U(1)_A \qquad \downarrow U(1)_A$$

$$(\frac{1}{2}, \frac{1}{2})_b: \qquad \rho' \qquad M_1$$

$$(1,0) + (0,1): \qquad a_1 \qquad SU(2)_L \times SU(2)_R \qquad \rho$$

Symmetry relations among J=1 mesons.

 \rightarrow restoration of chiral and U(1) axial symmetry

So chiral symmetry is restored... but what happens to confinement?

Quark confinement is the nonexistence of single quark entities in the physical spectrum.

Quarks in Coulomb gauge

Quark Propagator has <u>four</u> independent dressing functions

$$S^{-1}(\boldsymbol{p},p_4) = i\gamma_i p_i \boldsymbol{A_s}(\boldsymbol{p}) + i\gamma_4 p_4 \boldsymbol{A_t}(\boldsymbol{p}) + \gamma_4 p_4 \gamma_i p_i \boldsymbol{A_d}(\boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})$$

$$\boldsymbol{\nearrow} \boldsymbol{\nearrow} \boldsymbol{\nearrow} \boldsymbol{\nearrow}$$
spatial temporal mixed scalar

- ullet All dressing functions seem to be independent of \mathcal{P}_4
- Mixed component seems to vanish non-perturbatively
- Spatial and scalar components seem to diverge in the infrared
- Dynamical quark mass is finite in the infrared, cancellation of divergencies

$$M(\boldsymbol{p}) = \frac{B(\boldsymbol{p})}{A(\boldsymbol{p})}$$

Quark confinement in Coulomb gauge

- ullet Divergence of $A_s(oldsymbol{p})$ in the infrared leads to quark confinement
- ullet Explanation: Integrate free quark propagator over \mathcal{P}_4

$$S(\mathbf{p}) = \int \frac{dp_4}{2\pi} \frac{1}{i\mathbf{\gamma} \cdot \mathbf{p} + i\gamma_4 p_4 + m_0} = \frac{m_0 - i\mathbf{\gamma} \cdot \mathbf{p}}{2\omega(\mathbf{p})}$$

$$\omega({m p}) = \sqrt{{m p}^2 + m^2}$$
 dispersion relation for free quark

Perform same integration over non-perturbative quark propagator

$$S(\mathbf{p}) = \frac{B(\mathbf{p}) - i\mathbf{\gamma} \cdot \mathbf{p} A_s(\mathbf{p})}{2\omega(\mathbf{p})}$$

$$\omega(m{p}) = A_t(m{p}) A_s(m{p}) \sqrt{m{p}^2 + M^2(m{p})}$$
 dispersion relation for confined quark

Massless overlap propagator

- Massless Overlap Dirac operator: $D(0) = \rho \left(1 + \gamma_5 \mathrm{sign}\left[H_{\mathrm{W}}(-\rho)\right]\right)$
- \bullet Fullfills Ginsparg-Wilson equation: $\{D(0),\gamma_5\}=\frac{1}{\rho}D(0)\gamma_5D(0)$
- Free massless Overlap quark propagator:

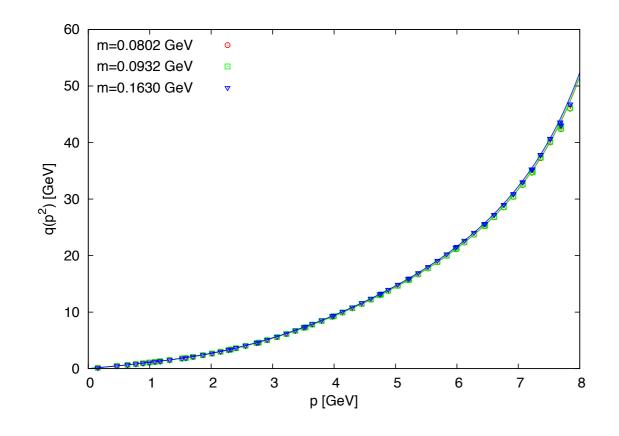
$$S^{(0)}(p) = -i\gamma_{\mu}C_{\mu}(p) + \frac{1}{2\rho}, \quad C_{\mu}(p) = \frac{1}{2\rho} \frac{k_{\mu}}{\sqrt{k_{\mu}^2 + A^2 + A}}, \quad A = \frac{1}{2}\hat{k}_{\mu}^2 - a\rho$$

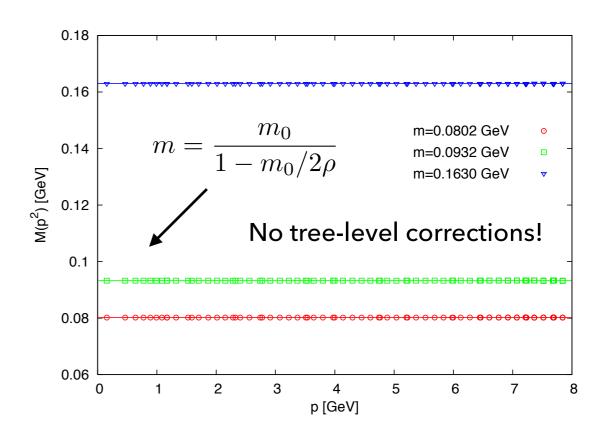
Basic step to make contact with continuum quark propagator:

$$\widetilde{S} = S - \frac{1}{2\rho} \Longrightarrow \{\widetilde{S}, \gamma_5\} = 0$$

Massive overlap propagator

- Massive Overlap Dirac operator: $D(m_0) = \left(1 \frac{m_0}{2\rho}\right)D(0) + m_0$
- lacksquare Free massive Overlap quark propagator: $\left(S^{(0)}
 ight)^{-1}(p)=i\gamma_{\mu}q_{\mu}+m$
- lacksquare Identify Overlap lattice momenta q_{μ} and current quark mass m



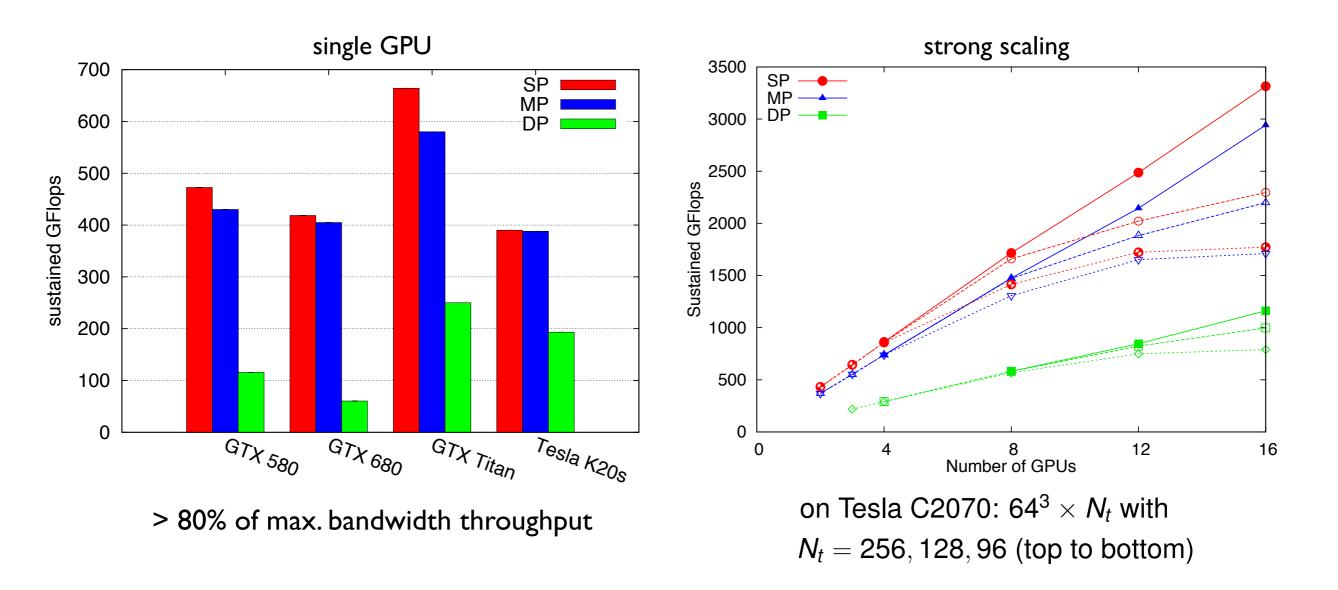


Lattice setup

- effect of dynamical quarks on Coulomb gauge quark propagator small [Burgio, M.S., Reinhardt, Quandt, Phys. Rev. D 86 (2012)]
- $\,$ Quenched Lüscher-Weisz gauge field configruations on $\,20\times20\,$ lattice with $a=0.2\,\,\mathrm{fm}$
- Gauge configurations fixed to Coulomb gauge; residual gauge freedom fixed to Integrated Polyakov gauge
- ullet Wilson-Dirac mass parameter ho=1.6
- To improve condition number, 140 low modes of kernel operator computed exactly

cuLGT: gauge fixing on GPUs

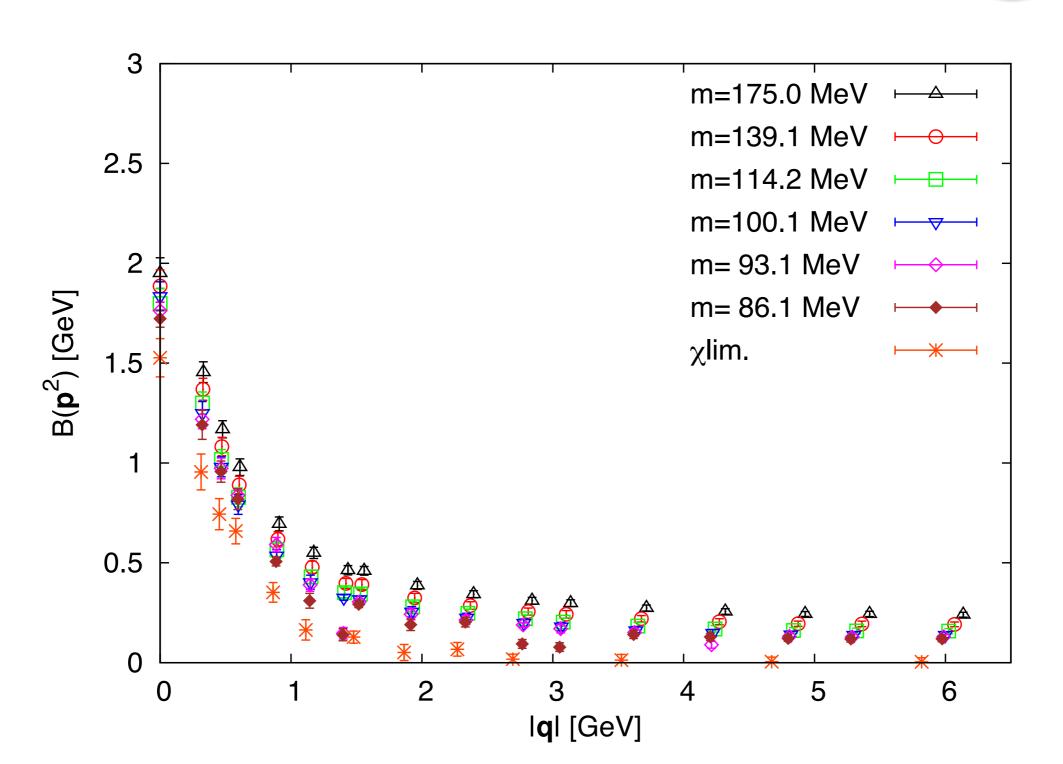
[M.S., H.Vogt, Comp. Phys. Commun. 184 (2013) 1907-1919]



code available: www.culgt.com and github.com/culgt

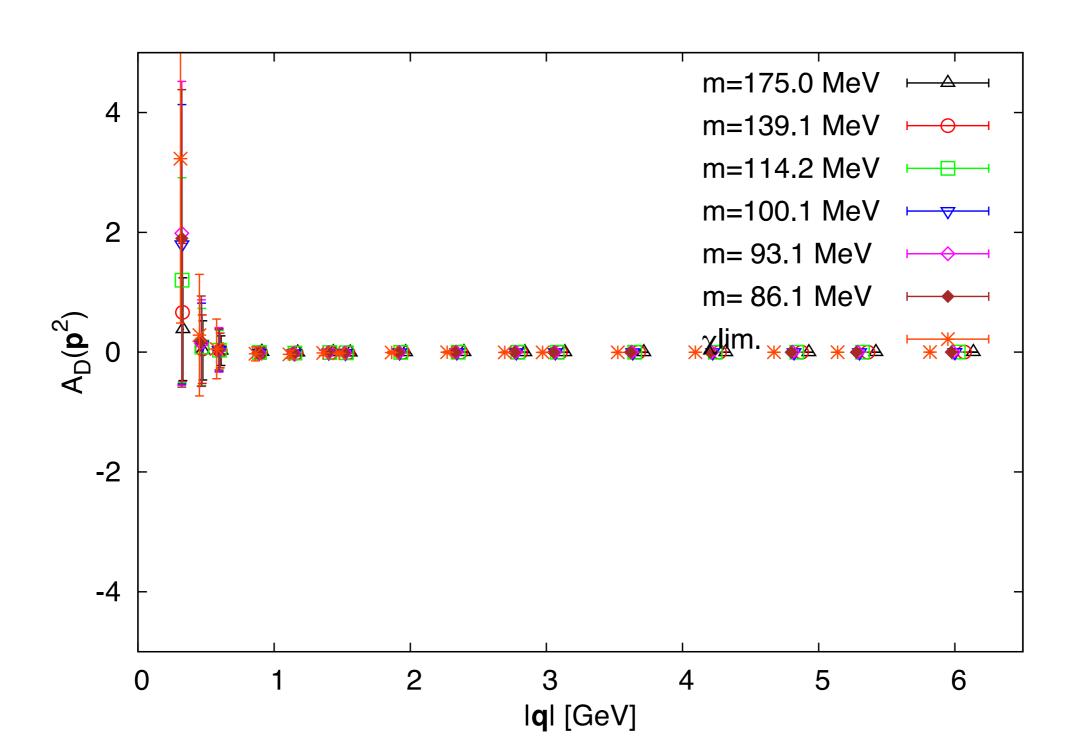
Scalar component

$$S^{-1}(\boldsymbol{p}, p_4) = i\gamma_i p_i \boldsymbol{A_s}(\boldsymbol{p}) + i\gamma_4 p_4 A_t(\boldsymbol{p}) + \gamma_4 p_4 \gamma_i p_i A_d(\boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})$$



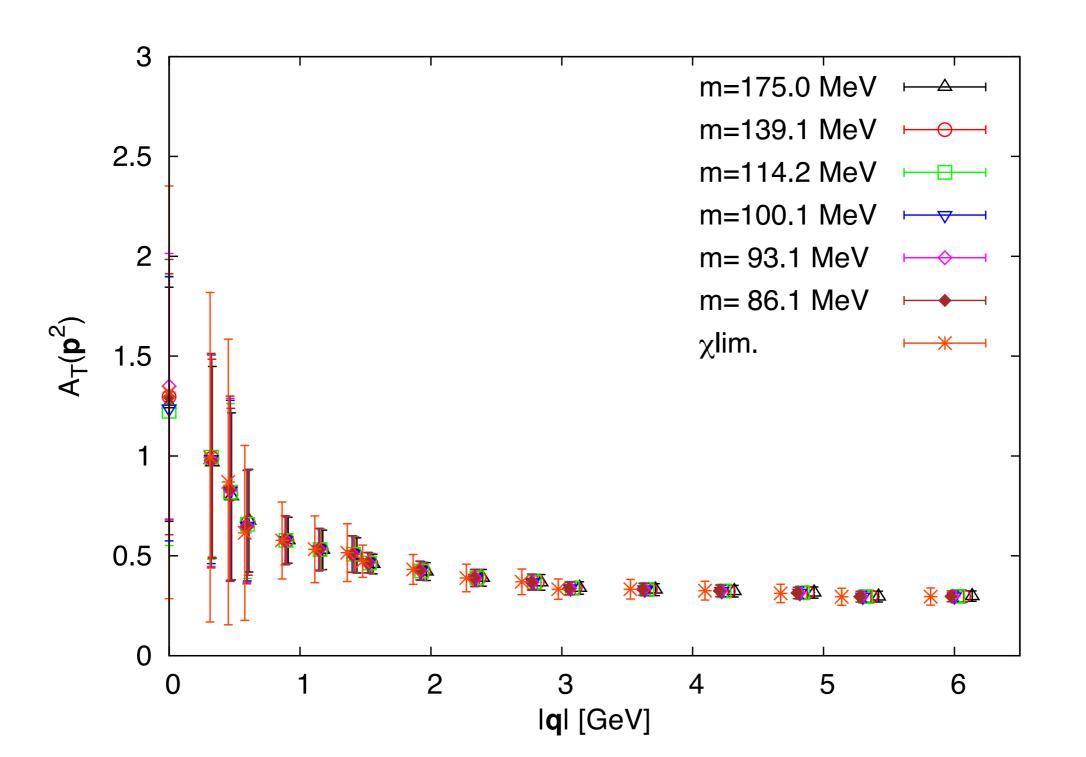
Mixed component

$$S^{-1}(\boldsymbol{p}, p_4) = i\gamma_i p_i \boldsymbol{A_s}(\boldsymbol{p}) + i\gamma_4 p_4 A_t(\boldsymbol{p}) + (\gamma_4 p_4 \gamma_i p_i A_d(\boldsymbol{p})) + \boldsymbol{B}(\boldsymbol{p})$$



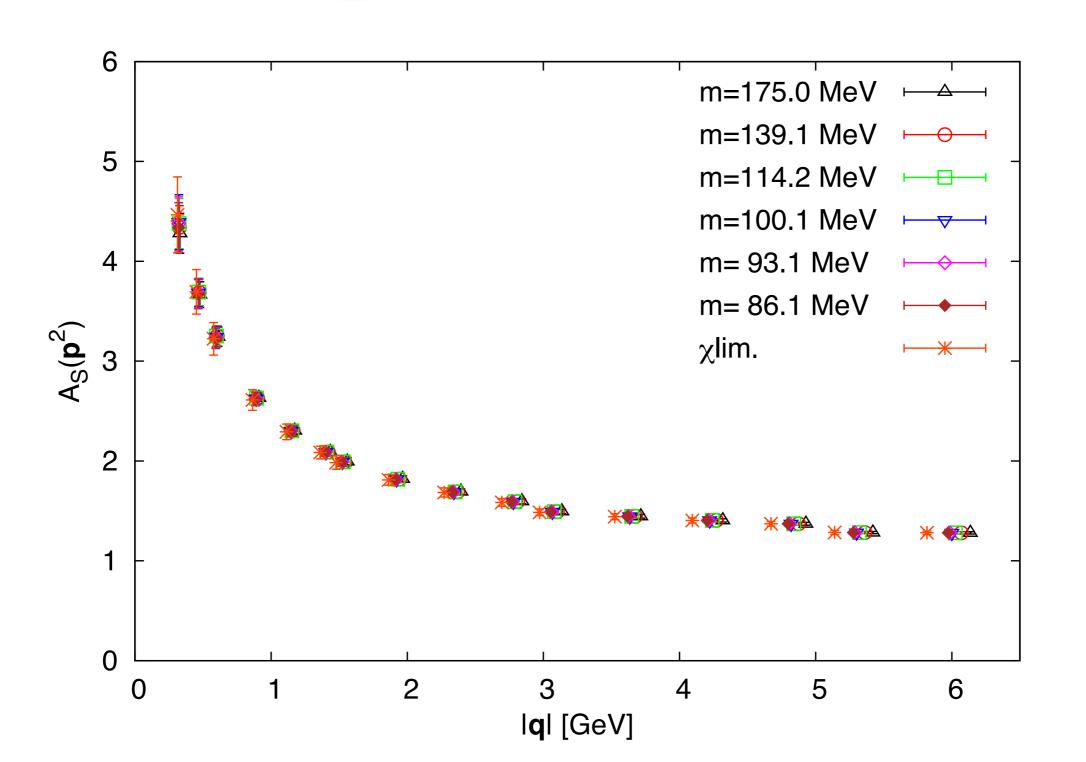
Temporal component

$$S^{-1}(\boldsymbol{p}, p_4) = i\gamma_i p_i \boldsymbol{A_s}(\boldsymbol{p}) + i\gamma_4 p_4 A_t(\boldsymbol{p}) + \gamma_4 p_4 \gamma_i p_i A_d(\boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})$$



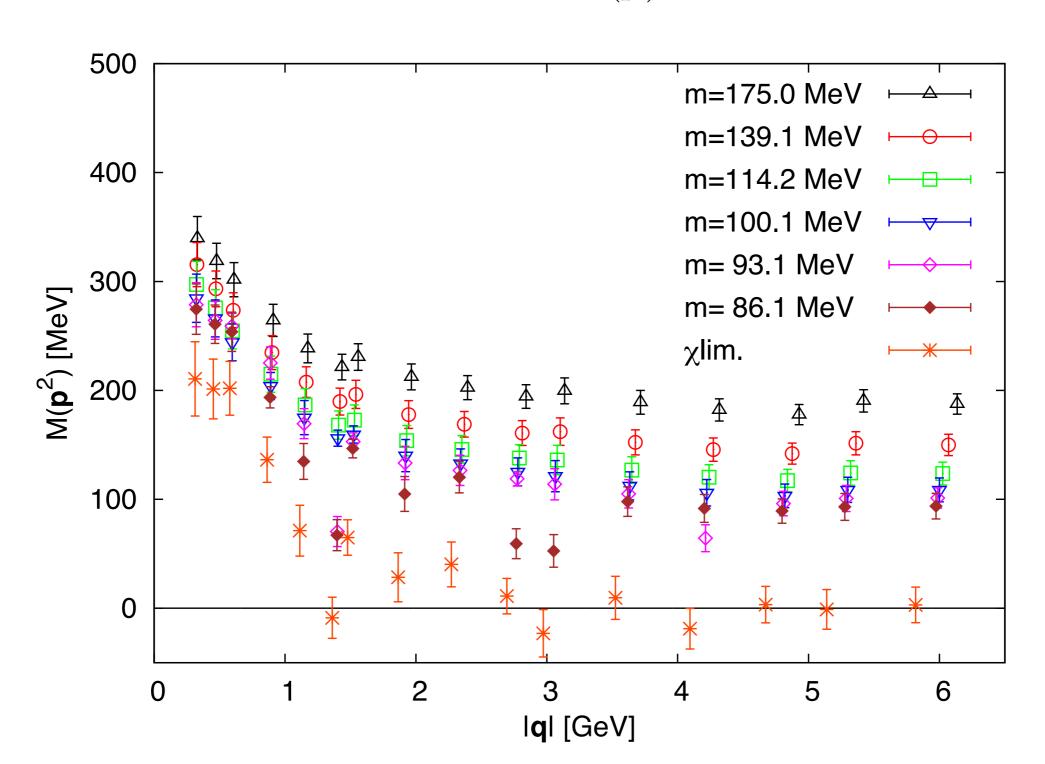
Spatial component

$$S^{-1}(\boldsymbol{p}, p_4) = i\gamma_i p_i \boldsymbol{A_s}(\boldsymbol{p}) + i\gamma_4 p_4 A_t(\boldsymbol{p}) + \gamma_4 p_4 \gamma_i p_i A_d(\boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})$$



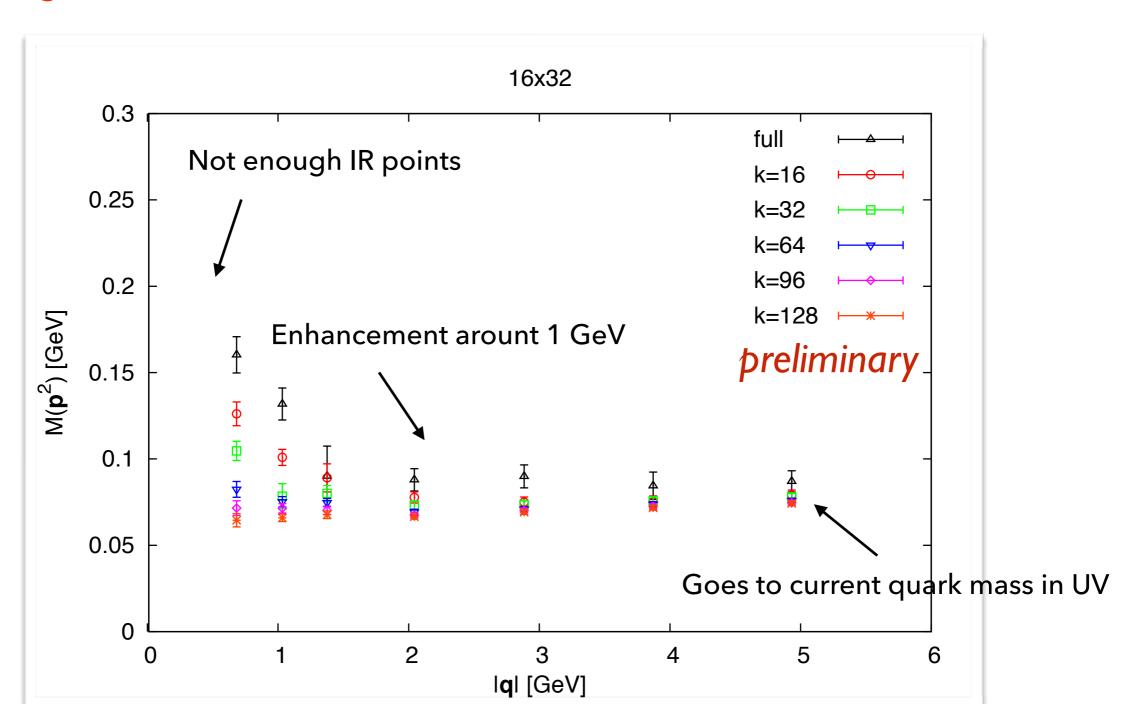
Mass function

$$M(\mathbf{p}) = \frac{B(\mathbf{p})}{A(\mathbf{p})}$$



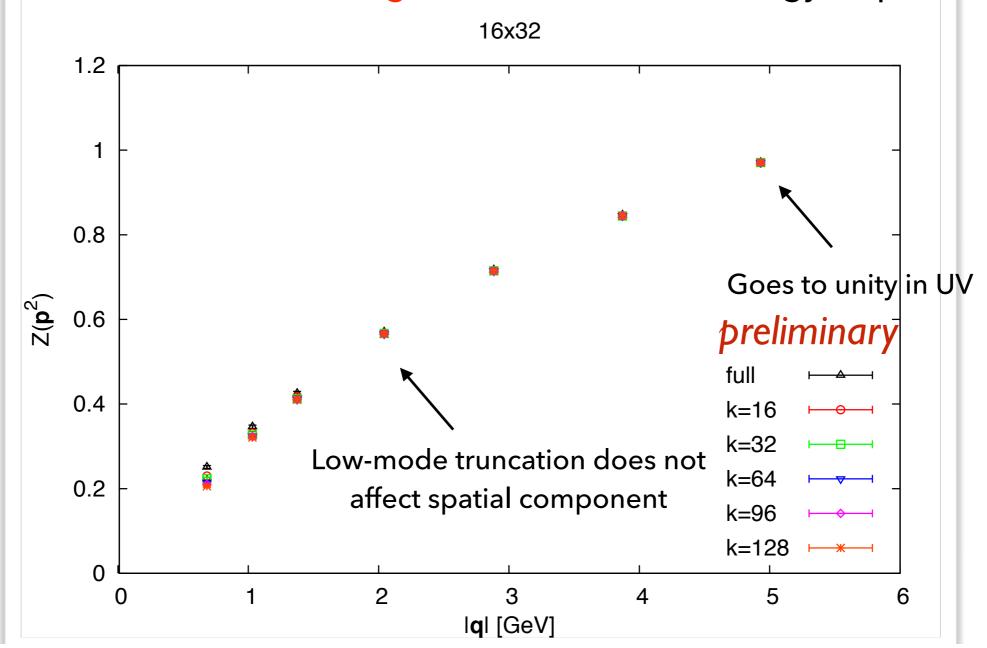
Dynamical mass & effect of low mode removal

Dynamical quark mass approaches current quark mass in IR after removing enough modes



Spatial component & effect of low mode

- Here $Z=1/A_s$ shown
- Spatial component does not change its shape after low-mode truncation
- It is an indication that divergence (in IR-limit) in energy dispersion still holds

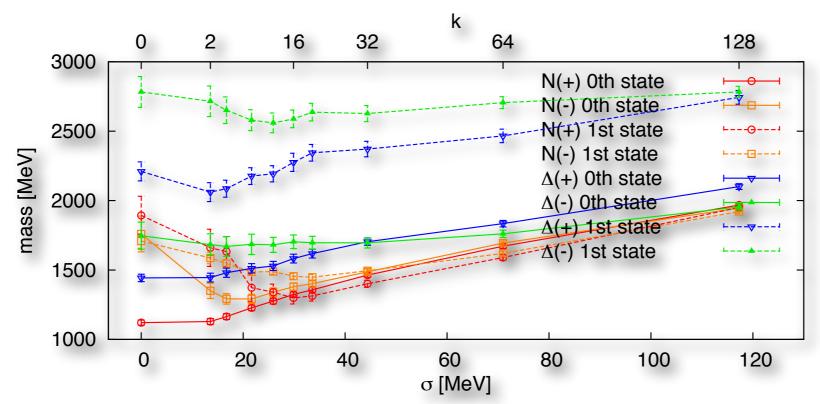


Summary & Conclusions

- we removed the lowest Dirac eigenmodes from valence quark propagators
- the meson spectrum and the quark mass function show that chiral symmetry gets restored
- the quark energy dispersion relation seems to remain IR divergent
- we have strong hints that confinement survives the restoration of chiral symmetry.

Appendix

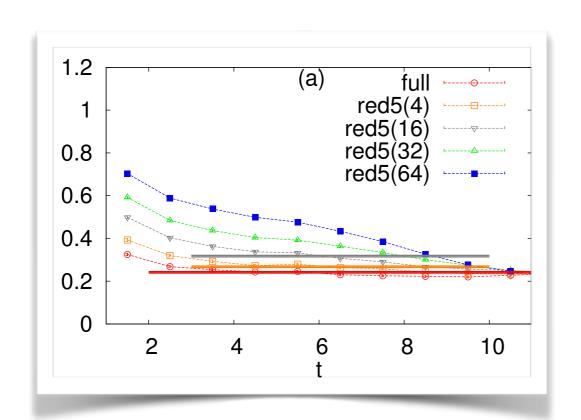
Baryon mass evolution

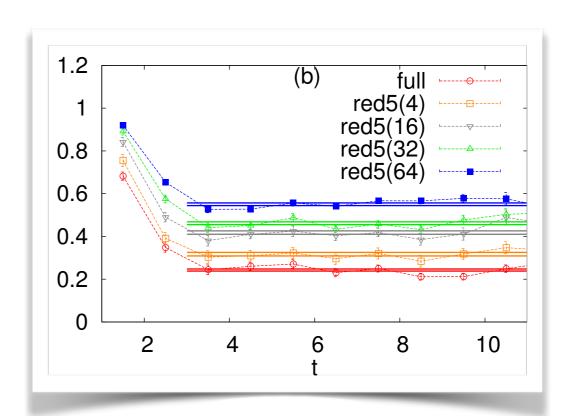


[Glozman, Lang, M.S., Phys. Rev. D 86 (2012) 014507]

- ullet parity doubling in the $J=1/2\,$ and $J=3/2\,$ channels
- degeneracy of nucleon ground and exited states
- splitting of ∆ ground vs. excited state remains: persistence of confinement

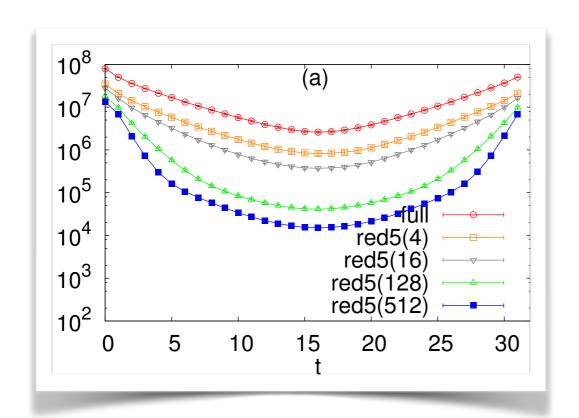
Pion without low-modes

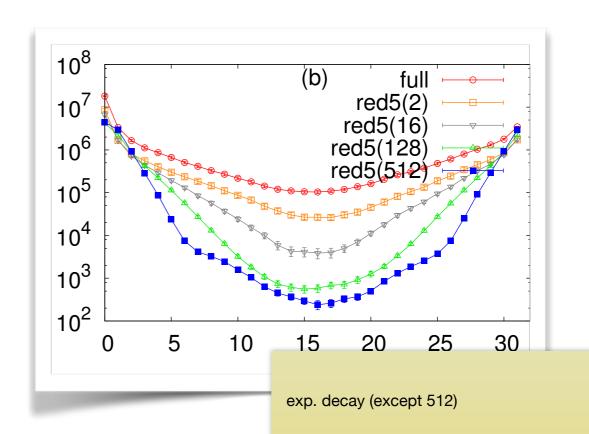




- Low-mode truncated effective masses of the $J^{PC}=0^{-+}$ sector in comparison to the eff. masses from full propagators
- interpolators: (a) $\bar{u}\gamma_5d$ (b) $\bar{u}\gamma_4\gamma_5d$

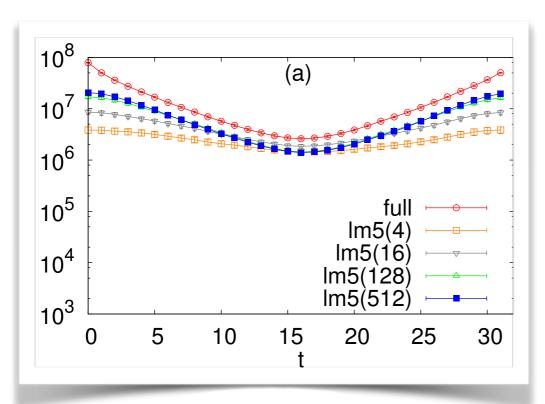
Pion without low-modes

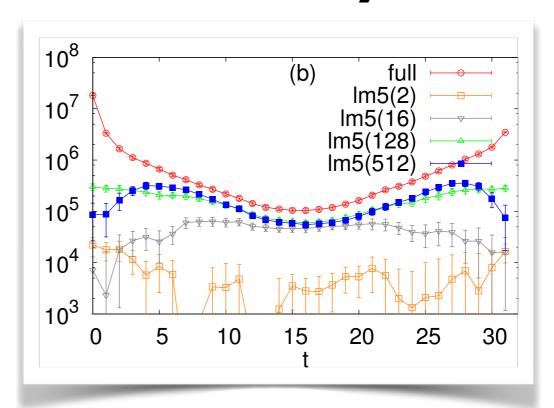




- Low-mode truncated correlators of the $J^{PC}=0^{-+}$ sector in comparison to the correlators from full propagators
- interpolators: (a) $\bar{u}\gamma_5 d$ (b) $\bar{u}\gamma_4\gamma_5 d$

Pion low-modes only





- Low-mode contribution to the correlators for the $J^{PC}=0^{-+}$ sector in comparison to the correlators from full propagators
- interpolators: (a) $ar u\gamma_5d$ (b) $ar u\gamma_4\gamma_5d$

pion strongly dominated by low-modes