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Introduction
The main issue addressed in all lattice analysis of pure Yang–Mills theories in
Coulomb gauge has been the renormalizability of Green’s functions; indeed, it has
been shown in e.g. Ref. [1] that for static correlators a non-perturbative renormal-
ization procedure can be defined in the lattice Hamiltonian limit at→ 0.
We show that, as for the gluon, the lattice Coulomb gauge static quark propagator
S(p) =

∫
dp4S(p) is renormalizable; from S(p) the renormalization function Z(|p|)

and the running mass M(|p|) can be extracted. We also find that, at least for im-
proved actions closer to the continuum limit, the full propagator S(p) has a trivial
energy dependence, making it also renormalizable and allowing for a definition of
the quark dispersion relation compatible with the confining properties of the theory.

Gauge field configurations
L3 × T a [fm] am m [MeV] # config.

(a) 203 × 64 0.121 0.010, 0.050 15.7, 78.9 202
(b) 203 × 64 0.121 0.020, 0.050 31.5, 78.9 50
(c) 203 × 64 0.120 0.030, 0.050 47.3, 78.9 25
(d) 203 × 64 0.119 0.040, 0.050 63.1, 78.9 25
(e) 203 × 64 0.121 – – 66
(f ) 283 × 96 0.086 0.0062, 0.031 14.0, 67.8 50
(g) 283 × 96 0.086 0.0124, 0.031 27.1, 67.8 50
(h) 283 × 96 0.086 – – 77
(i) 643 × 144 0.060 0.0036, 0.0108 11.8, 35.3 5

Our calculations have been performed on
nine sets of gauge field configurations gen-
erated by the MILC collaboration [2, 3],
made available via the Gauge Connec-
tion. The configurations were produced
with the Symanzik-improved Lüscher–
Weisz gauge action; seven out of nine sets
include two light degenerate (u, d) and one heavier (s) quark flavor, while two are in
the quenched approximation; all dynamical calculations used the Asqtad improved
action.

Quark propagator in Coulomb gauge
The tree-level continuum quark propagator reads in Euclidean space:

S(0)(p)−1 = ip/ + ip/4 +m, (1)

where we have explicitely separated the spatial momenta pi from the temporal one p4
(the energy) to make contact with the non-manifestly Euclidean invariant interacting
Coulomb gauge propagator S−1(p). The latter can be decomposed as

S−1(p) = ip/As(|p|, p4) + ip/4At(|p|, p4) +Bm(|p|, p4) (2)

with scalar functions As(|p|, p4), At(|p|, p4) and Bm(|p|, p4), to which we will refer
as the spatial, temporal and massive component, respectively. We found the possi-
ble fourth component ∝

∑
j pjσj4 to be zero [4] and thus will not further consider it

here.

Renormalizability
Due to the energy independence of the dressing functions Eq. (2) [4], we can average
them over p4 to minimize statistical fluctuations. The full propagator thus reads

S−1(p) = ik/aAs(|p|) + ik/4aAt(|p|) +Bm(|p|) , (3)

while its static counterpart is obviously:

S−1(p) = ik/aAs(|p|) +Bm(|p|) , (4)

since Eq. (3) is even in p4 and thus the temporal component, when integrated from
−π to π, will vanish. Here, k = k(p) denotes the Asqtad lattice momentum.
We can now define from Eq. (3), Eq. (4) the static propagator

Sζ(p) =
Zζ(|p|)

ip/ +M(|p|)
. (5)

and its non-static counterpart

Sζ(p) =
Zζ(|p|)

iak/ + iak/4α(|p|) +M(|p|)
, (6)

where the renormalization function Z(|p|), the mass function M(|p|) and the “run-
ning energy” α(|p|) are given by

Z(|p|) =
( π∫
−π

dp̂4
2π

As(|p|, p4)
)−1

α(|p|) =
∫ π
−π

dp̂4
2π At(|p|, p4)∫ π

−π
dp̂4
2π As(|p|, p4)

, M(|p|) =
∫ π
−π

dp̂4
2π Bm(|p|, p4)∫ π

−π
dp̂4
2π As(|p|, p4)

. (7)

The integrals are intended as statistical average. To check renormalizability we
therefore now need to establish the scale invariance of M and, for the full propaga-
tor, of α on one side, and the scaling properties of Z on the other side.

Results
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Figure 1: Top to bottom:M(|p|)
from sets (a)-(g), Z(|p|) from sets
(f ) and (i), α(|p|) from sets (e), (h).

In Fig. 1a we show the mass functionM(|p|) from
configuration sets (a)–(d), with scale a ≈ 0.12 fm,
compared to configuration sets (f ) and (g), which
have a scale a = 0.086 fm. These sets are chosen
to have approximately the same physical volume,
so to minimize finite size effects at the two differ-
ent cutoffs. As can be seen, M(|p|) nicely agrees
for the sets with similar masses.
We compare the corresponding wave-function
renormalization functions Z(|p|) from configura-
tion sets (g) and (b) in Fig. 1b, finding a good
agreement once we rescale both to Z(ζ) = 1 for
ζ = 3.0GeV.
We can thus conclude that the static propagator
Eq. (5) is multiplicative renormalizable.
Turning now to the full propagator Eq. (6), Fig. 1c
shows the function α, i.e. the ratio At to As,
from different configuration sets. The scaling be-
haviour is very good and we can thus conclude
that the full propagator Eq. (6) is also multiplica-
tive renormalizable; this allows us to define a dis-
persion relation for the quark as in Eq. (8).

Confinement
From the full non-static propagator Eq. (6) we can directly read from the resolution
of its poles in p4, or equivalently intergration in p4, the effective energy:

E(|p|) = 1

α(|p|)
√

p2 +M 2(|p|) . (8)

Interestingly, α in Fig. 1c tends to be suppressed in the IR, enhancing E. If α
should indeed prove to vanish in the IR, α(|p|) ∝ |p|k, we would have for the quark
dispersion relation a behaviour qualitatively similar to the Gribov formula for the
gluon [5, 1], explaning quark confinement with an IR diverging effective energy,
E ∝ |p|−k.

Comparison to Landau gauge

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

M
(p

2 ),
 M

(p
2 ) 

[G
eV

]

|k|, |k| [GeV]

283x96, m = 27.1 MeV, Landau gauge

283x96, m = 27.1 MeV, Coulomb gauge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

Z
(p

2 ),
 Z

(p
2 )

|k|, |k| [GeV]

283x96, m = 27.1 MeV, Landau gauge

283x96, m = 27.1 MeV, Coulomb gauge

Figure 2: Landau vs. Coulomb gauge: M(|p|) (left) and Z(|p|)
(right) from (f ).

In Fig. 2 we show the
comparison between
the mass and renor-
malization functions in
Coulomb and Landau
gauge, the latter taken
from Ref. [6]. Apart
for a slight difference
in the intermediate

momentum region M almost coincides in both gauges, while as expected Z, where
the renormalization point ζ has been set at the largest available momentum in
Coulomb gauge, 4.64 GeV, shows a much stronger gauge dependence.

Chiral limit
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Figure 3: Chiral limits: M from (a)–(d) (left) and from (i) (right).

In Fig. 3a we have
attempted for the con-
figurations (a)–(d),
where the dynami-
cal masses diminish
at constant cutoff, a
chiral extrapolation
of the mass function
determined for Asqtad fermions at the dynamical point, so to avoid systematic
errors due to partial quenching. In Fig. 3b we show the chiral extrapolation for
configuration (i) with Kogut-Susskind fermions, where the mass has been fixed to
five different values, with only the last at the dynamical point. Within error bars the
two extrapolations agree.
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