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Introduction
Gauge dependent correlators like the
fundamental two-point functions may
only be studied after fixing theSU(3)
gauge freedom. Popular gauges are the
Landau and the Coulomb gauge which
read in Euclidean space,

m
∑

µ=1

∂µAµ(x) = 0,

with m equal to 3 or 4 for Coulomb or
Landau gauge, respectively.
On the lattice, removing the gauge free-
dom is equivalent to maximizing the
corresponding gauge functional

Fg[U ] = Re

∑

µ,x

tr
[

U g
µ(x)+U g

µ(x− µ̂)†
]

with respect to gauge transformations
g(x) ∈ SU(3) where

U g
µ(x) ≡ g(x)Uµ(x)g(x + µ̂)†.

The lattice gauge fieldsUµ(x) are
connected to the continuum ones via
Uµ(x) = eiaAµ(x).
The cost of fixing the gauge on the lat-
tice increases exponentially with the lat-
tice volume and is one of the most ex-
pensive tasks in extracting physical con-
tent out of given gauge configurations.
We show how the process of lat-
tice gauge fixing with the overrelax-
ation algorithm can be accelerated us-
ing NVIDIA’s CUDA (Compute Uni-
fied Device Architecture) programming
environment for GPUs (Graphical Pro-
cessing Units). We compare perfor-
mance of the algorithm to conventional
calculations on the CPU and present
techniques to relax the bandwidth re-
strictions of the GPU.
For a general discussion of lattice gauge
fixing and its problems see, e.g., [1].

Gauge Fixing via Overrelaxation
The gauge functional has degrees of
freedom ofO(mNcV ) whereNc is the
number of colors andV = L3 × T

is the lattice volume. The idea of the
relaxation algorithm is to optimize the
value ofFg[U ] locally [2], i.e., for all
x maximizeRe tr [g(x)K(x)] where we
defined

K(x) :=
∑

µ

(

Uµ(x)g(x + µ̂)†

+ Uµ(x− µ̂)†g(x− µ̂)†
)

.

The local solution thereof is given, in
the case of the gauge groupSU(2), by

g(x) =
K(x)†

√

detK(x)†

and forSU(3) we can iteratively operate
in theSU(2)-subgroups [3].
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In order
to reduce
the criti-
cal slow-
ing down of
the relax-
ation algo-

rithm on large lattices, the authors of [4]
suggested to apply anover-relaxation
algorithm which replaces the gauge
transformationg(x) by gω(x) in each
step of the iteration. This method has
widely been studied and the value ofω

was found to well adapted at around 1.7,
see references in [1].
The iteration is stopped whenθ < ε2

whereθ is the finite difference approx-
imation of the first derivative ofAµ(x)

averaged overV .

The “Fermi Architecture”
After NVIDIA introduced CUDA in
2006 together with their first genera-
tion of hardware supporting this new
GPU computing model, the G80 fam-
ily, the Fermi architecture is now al-
ready the third generation and was re-
leased in 2009. Its major improve-
ments are: higher double precision per-
formance, ECC (error correction code)
support, L1 and L2 caches and more
shared memory on the multi-processor
level.

NVIDIA GeForce GTX 480

Multiprocessors 15

Cores/MP 32

Cores 480

Global memory 1.5 GB

Shared memory/block 48 KB

Warp size 32

Clock rate 1.40 GHz

Peak performance 1345 Gflops (SP)

Memory bandwidth 177 GB/s

For our
study we
used the
NVIDIA
GeForce
GTX 480
which in-
cludes in total 480 cores. Threads are
started in warps of size 32 and a multi-
processor handles many warps concur-
rently.

Mapping Lattice QCD to the GPU
Since CUDA supports only lattices of
up to 3D natively, we linearize the 4D
lattice index using divisions and mod-
ulo conversions ofV by the spatial and
temporal extent of the lattice. We assign
each lattice site to a separate thread and
start 256 threads per multiprocessor si-
multaneously.
A function which is called from the host
system and which performs calculations

on the GPU is called a kernel. We
implemented two kernels, one which
checks the current value of the gauge
fixing functional and the gauge preci-
sion after every 100th iteration step and
a second which does the actual work,
i.e., which performs an overrelaxation
step. The latter is invoked for lattice
sites of even and odd parity consecu-
tively.

Optimizations
The GPU can read data from global de-
vice memory in a fast way only if the
data is accurately coalesced; in order to
do so we rearrange the gauge field into
two blocks, one for even and one for
odd lattice sites. Moreover, for the same
sake of memory coalescing, we choose
the site index running fastest.
Applying the overrelaxation algorithm
to one lattice site needs 2253 floating
point operations and we have to read and
write eightSU(3)matrices for every site.
Each matrix consists out of 9 complex
numbers, or 18 reals, and in single pre-
cision (4 bytes/real) this sums up to a
total data transfer of 1152 bytes per site.
Comparing the ratio data transfer per
floating point operation,1152/2253 ≈

0.5, with the theoretical peak perfor-
mance of the GTX 480,177/1345 ≈ 0.1,

we clearly see that we are solely con-
strained by memory bandwidth and not
by the maximum number of arithmetic
instructions.
In order to reduce memory traffic we use
the unitarity ofSU(3) matrices to recon-
struct the third line of each matrix on the
fly when needed instead of storing it:






a1 a2 a3
b1 b2 b3
c1 c2 c3






∈ SU(3), c = (a× b)∗ .

A minimal 8 parameter reconstruction
[5] turned out to be numerically not sta-
ble enough for our purpose since we not
only have to read the gauge fields but
also write them in each step of the it-
eration.
For more details we refer to [5], [6] and
references therein.

Results
We compare the performance of our
GPU kernels on the GTX 480 in sin-
gle and double precision to the per-
formance of the same code com-
piled for the Intel Core i7 proces-
sor with the Intel Compiler (Version
12.0) using the compiler flag xSSE4.2.
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Furthermore we compare to the Fer-
miQCD library [7] which is an open
source library for Lattice QCD applica-
tions written in C++.a We run both CPU
programs on a single core of the Core

i7 Nehalem Bloomfield processor. In
each case we stop the algorithm when
the Landau gauge is reached within a
precision ofε2 = 5.0 · 10−7.
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aWe modified FermiQCD to also check the gauge precision every 100th step only.

Conclusion
The expensive task of fixing the gauge
in lattice QCD can greatly be acceler-
ated by the use of GPUs. In single
precision we gained a factor of around
250 versus the FermiQCD library and a
factor of approximately 35 in compari-
son to our own optimized code for the

CPU. When switching to double preci-
sion performance decreases by a factor
of 2.9.
A future multi GPU implementation
will allow for processing lattices that do
not fit into the device memory of a sin-
gle GPU.
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