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Abstract

Within the framework of this thesis, the interrelation between the two characteristic phenomena
of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement,
is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method
to artificially restore the dynamically broken chiral symmetry. The low-mode part of the
Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the
Banks–Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we
construct valence quark propagators that exclude a variable sized part of the low-mode Dirac
spectrum, with the aim of using these as an input for meson and baryon interpolating fields.
Subsequently, we explore the behavior of ground and excited states of the low-mode truncated
hadrons using the variational analysis method. We look for the existence of confined hadron
states and extract effective masses where applicable.
The pion is dominated by the Dirac low-mode sector, and as a consequence, we destroy

its existence upon removal of that part of the spectrum. On the contrary, all other light
isovector mesons, and the nucleon and Delta as representatives of the baryon sector, survive the
aforementioned truncation and, moreover, the signals of their exponentially decaying correlator
functions improve significantly. An effective mass analysis of the particles allows for the display
of the masses as a function of the truncation level. The latter reveals the restoration of the
chiral symmetry by means of matching the particle masses of would-be chiral partners. The
fact that higher lying hadrons (e.g. the tensor meson b1 and the Delta baryon) retain a higher
mass compared with the other states, strengthens our interpretation that confinement persists
in our setup. Surprisingly, the masses of all surviving particles are rather large compared with
the naive expectation which is based on the assumption that the dynamical breaking of the
chiral symmetry accounts for the main mass contribution in light hadrons.
Moreover, we explore the evolution of the quark wavefunction renormalization function and

the renormalization point invariant mass function of the quark propagator in a gauge fixed
setting. As expected, vanishing of the dynamically generated mass in the infrared of the mass
function is found upon Dirac low-mode removal. Consequently, the mass of the “constituent
quarks” of low-mode truncated hadrons cannot account for the rather large hadron masses.
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However, we also find infrared suppression of the quark wavefunction renormalization function,
which implies that low-momentum quarks are prevented from propagating. Therefore, we
conclude that the “constituent quarks” attain higher momenta compared with the full theory
and thus the energy of the hadrons increases. This picture is supported by the fact that the
lowest Dirac eigenmodes, which we remove from the spectrum, are directly related to the lowest
quark momenta.
Motivated by the necessity of fixing the gauge in the aforementioned study of the quark

propagator, we developed a flexible high performance code for lattice gauge fixing, accelerated by
graphic processing units (GPUs) using NVIDIA® CUDA™ (Compute Unified Device Architecture).
Code highlights are a sustained performance of 380 Gflops on the NVIDIA GeForce GTX 580
and linear weak scaling on multiple GPUs.
Lastly, more related but unpublished work on the topic is presented. This includes a study

of the locality violation of low-mode truncated Dirac operators, a discussion of the possible
extension of the low-mode truncation method to the sea quark sector based on a reweighting
scheme, as well as the presentation of an alternative trail to restore the dynamically broken
chiral symmetry. The latter is based on the partial removal of the interactions of the quark
propagator in its Clifford algebra constituents.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) [11, 12] is widely accepted as the correct theory of the
strong nuclear force. The strong nuclear force, or the strong interaction, is one of the four
fundamental forces of nature along with the weak nuclear force, the electromagnetic force and
the gravitational force. Whereas the long-range electromagnetic and gravitational forces are
familiar, it is the weak nuclear force that is responsible for radioactive decays of elementary
particles, and the strong nuclear force that binds the neutrons and protons in nuclei to allow
the formation of atoms, molecules, and thereby all known matter.

The underlying degrees of freedom of the strong interaction are the quarks and gluons, which
carry a so-called color charge. Hence, a quark can either be charged red, blue or green and the
anti-quarks anti-red, anti-blue or anti-green respectively. The gluons are the gauge bosons of
QCD and transmit the color charge between the quarks.

While gluons are, as opposed to quarks, massless and neutral with respect to electric charge,
they are charged with color themselves and they come in an eightfold way which arises from the
dimension of the underlying gauge group SU(3). The quarks, in contrast, are massive and come
in six different flavors: up and down, charm and strange, and top and bottom. The flavors
differ in their electric charge (+2/3 of the elementary charge for the up, charm and top quarks;
−1/3 of the elementary charge for the down, strange and bottom quarks) and predominantly
in their mass values which range from 2− 3 MeV/c2 for the up quark to ∼ 171 GeV/c2 for the
heaviest (top) quark.
Although the existence of the quarks, at first primarily introduced as a mathematical tool,

has been confirmed by scattering experiments in the 1970s, individual quarks have never been
observed in nature. Instead, the spectrum of elementary particles exhibits solely color-neutral
states, like the hadrons, which consist of at least either three quarks (a baryon), three anti-quarks

1



2 Chapter 1 Introduction

(an anti-baryon), or one quark plus one anti-quark (a meson). In nature, only color-neutral
states exist and this is known as quark confinement.

Besides confinement, the other characteristic phenomenon of QCD is chiral symmetry and its
dynamical breaking. On the formal level of the Lagrangian, massless quarks can be classified
into two groups: left-handed and right-handed quarks, and the Lagrangian for these can be
split into two independent terms. The chiral symmetry is then a set of transformations that
can be carried out independently for the two kinds of quarks. The interactions of the quarks
with the gluon fields, however, break this symmetry dynamically and generate a non-vanishing
chiral condensate 〈ψψ〉.

It is yet to be understood to what extent these two phenomena, confinement and dynamical
chiral symmetry breaking (DχSB), are interrelated. Can, for example, confinement persist
in a world without DχSB? This is one of the questions that will be addressed in this thesis.
Moreover, the importance of chiral symmetry breaking for the mass spectrum of light hadrons
will be investigated. For example, it is often believed that DχSBaccounts for the major part of
the mass of the nucleon and the rho meson.

The asymptotic freedom of QCD validates the application of perturbative methods in the large
momentum regime where interactions become weak. QCD’s characteristic features confinement
and DχSB, however, are large distance effects and thus cannot be tackled within perturbation
theory. Therefore, nonperturbative ab initio methods are desirable in order to attack these
problems. The most promising such method is lattice gauge field theory, and in particular lattice
QCD [13] that is our tool of choice. In this context, one replaces the continuous space-time by
a finite lattice, which serves as a regulator of the theory. The latter finite theory can then be
simulated on a computer and the renormalizability of QCD ensures the independence of the
results from the lattice cutoff once the continuum limit is performed a posteriori.
In studies relevant to our work [14, 15, 16, 17], one study [16] used truncations of quark

propagators which include or exclude the lowest eigenmodes of the Dirac operator to study the
influence of low eigenmodes on light-quark meson correlators. It was found that low eigenmodes
make a large contribution to the long-distance part of the pion propagator, but a small
contribution to the short-distance part, which is dominated by excited states. The dominance
of the low eigenmodes on some meson correlation functions was used in Ref. [18] to improve
the signal of correlators by averaging the contribution of the low lying eigenmodes over all
positions of the source on the lattice. The author of another study [19] shows that, in Euclidean
correlation functions, the zero virtuality modes contribute to effects that spontaneously break
chiral symmetry, and only to such effects. Moreover, an explicit construction for correlation
functions removing the effects of chiral symmetry breaking is presented. Our work follows
the spirit of [16] but the motivation is different: we aim to study the interrelation between
DχSBand confinement. To this end, we performed a hadron spectroscopy using correlation
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functions that were constructed using Dirac low-mode truncated quark propagators.
The remainder of this work is structured as follows. Firstly, and within this introductory

chapter, we briefly describe how to simulate QCD on a finite space-time lattice in order to
extract hadron masses (Sec. 1.1). Furthermore, we discuss the properties of the chiral symmetry,
and briefly review some definitions of confinement (Secs. 1.2 and 1.3 respectively). In Sec. 1.4,
we present the connection of the low lying eigenvalues of the Dirac operator with the dynamical
breaking of the chiral symmetry and, based on the latter, explain how we artificially restored the
chiral symmetry within this work. The main part of this thesis (Chaps. 2, 3, 4 and 5) comprises
of the original published work verbatim on the subject. In each of these chapters, a preface
will relate each individual paper to the thesis as a whole. We collect additional unpublished
research material on the topic in Chap. 6 and draw conclusions in Chap. 7.

1.1 Quantum chromodynamics on the lattice

In the present section we recall the structure of the continuum QCD Lagrangian, which we
subsequently discretize on a finite space-time lattice. Thereafter, we discuss the quantization of
QCD in terms of the path integral approach and, related thereto, the calculation of correlation
functions on the lattice with Monte Carlo techniques. The discussion of the basics of lattice
QCD will be closed by the demonstration of the extraction of hadron masses of ground and
excited states from Euclidean correlation functions.

1.1.1 The QCD Lagrangian

Before we discretize QCD, we list the Euclidean continuum Lagrangian of QCD and its gauge
symmetries. The QCD Lagrangian is the extension of the analog from quantum electrodynamics
(QED) to Nf flavors of fermions, the quarks, and to the non-Abelian gauge group SU(3). For
the sake of readability, we adopt a vector notation for the internal Dirac and color structure of
the quark fields ψ(x), ψ(x) and accordingly a matrix notation for the 4× 4 Dirac matrices γµ
and the 3× 3 color matrices Aµ(x) = 1

2
∑8
i=1A

(i)
µ (x)λi, which represent the gluon fields. The λi

are the generators of the group SU(3) in the defining representation, the so-called Gell-Mann
matrices. Then, the Lagrangian1 of QCD reads

LQCD(x) =
Nf∑
f=1

ψ
(f)(x)

(
γµDµ(x) +m(f)

)
ψ(f)(x) + 1

2g2 tr [Fµν(x)Fµν(x)] . (1.1)

1 We make use of the common practice to call L the Lagrangian, which is strictly speaking the Lagrangian
density.
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Here g denotes the gauge coupling and we introduced the covariant derivative

Dµ(x) = ∂µ + iAµ(x) , (1.2)

as well as the field strength tensor

Fµν(x) = −i [Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x), Aν(x)] . (1.3)

The QCD Lagrangian is invariant under the following set of local gauge transformations of
the fermion fields, let g(x) ∈ SU(3) for all x,

ψ(x)→ ψ
′(x) = ψ(x)g(x)† , (1.4)

ψ(x)→ ψ′(x) = g(x)ψ(x) . (1.5)

Furthermore, by construction, invariance is guaranteed for the following transformations that
affect the gauge fields:

Dµ(x)→ D′µ(x) = g(x)Dµ(x)g(x)† , (1.6)

Fµν(x)→ F ′µν(x) = g(x)Fµν(x)g(x)† . (1.7)

1.1.2 Discretizing the QCD Lagrangian

In order to discretize QCD, we start off by replacing the continuous four dimensional space-time
with a discrete lattice Λ of size N1 ×N2 ×N3 ×N4 ≡ N3

s ×Nt,

Λ = {n ≡ (n1, . . . ,n4) |nµ = 0, . . . ,Nµ − 1} , (1.8)

with periodic boundary conditions1 and an isotropic lattice spacing a, such that the continuum
coordinate xµ is related to the dimensionless lattice coordinate nµ via xµ = anµ.

Next, we consider the free fermionic part of the Lagrangian Eq. (1.1) for a single flavor (the
generalization to Nf flavors is straightforward),

LF (x) = ψ(x) (γµ∂µ +m)ψ(x) . (1.9)

We substitute the partial derivative ∂µ with the central finite difference discretization, which

1 To obtain the correct reconstruction of the Hilbert space for the Minkowskian theory, one imposes anti-periodic
temporal boundary conditions for the fermions.
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then yields

LF (n) = ψ(n)
(∑

µ

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a +mψ(n)
)
, (1.10)

where n + µ̂ and n − µ̂ denote the neighbor sites of n in positive and negative µ-direction,
respectively. Eq. (1.10) can be rewritten as the bilinear form

LF (n) =
∑
m∈Λ

ψ(n)D(n,m)ψ(m) , (1.11)

where the sum runs over all lattice sites m and D is the free naive lattice Dirac operator,

D(n,m) =
∑
µ

γµ
δm,n+µ̂ − δm,n−µ̂

2a +m, (1.12)

which is trivial in color space. The inverse of the massless naive Dirac operator in momentum
space, i.e., the massless naive quark propagator, has not only a pole at p = (0, 0, 0, 0), like in
the continuum, but has additional poles whenever all d components of p are either equal to
zero or equal to π/a. Thus, the naive Dirac operator generates 2d − 1 unphysical fermions, the
so-called doublers.
Nielsen and Ninomiya derived a no-go theorem [20, 21, 22], based on topology arguments,

which states that it is impossible to have a (naively) chirally invariant, doubler-free, local and
translational invariant discretization of fermions on the lattice.

Wilson suggested to remove the doublers by adding a term proportional to the inverse lattice
spacing that assigns an additional mass to the unphysical doublers and ensures that these
decouple from the theory in the continuum limit. The Wilson term, though, breaks chiral
symmetry at finite lattice spacing explicitly. We will discuss chiral symmetry in Sec. 1.2 in
more detail and then see how the Ginsparg–Wilson equation leads to a way out of this seeming
dilemma.
For now we stick with the naive Dirac operator and proceed by implementing the most

fundamental symmetry of gauge theories, the local gauge symmetry. We require the discretized
Lagrangian to be in analog to its continuum counterpart invariant under local gauge transfor-
mations of the form (1.4) and (1.5). It is easy to see that the mass term of the free fermion
Lagrangian (1.9) is trivially invariant under that set of transformations. Consequently, we
require the terms of the central finite difference, i.e, ψ(n)ψ(n ± µ̂), to be invariant under
(1.4) and (1.5), as well. Following the same line of arguments as in the continuum, one can
achieve invariance by introducing an oriented field U±µ(n) ∈ SU(3) that transforms under gauge
transformations according to

U±µ(n)→ g(n)U±µ(n) g(n± µ̂)†. (1.13)
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Therewith, we dress the naive Dirac operator (1.12), such that

D(n,m) =
∑
µ

γµ
Uµ(n) δm,n+µ̂ − U−µ(n) δm,n−µ̂

2a +m. (1.14)

Now it is straightforward to show that the first part of the kinetic term of (1.14) is, as required,
invariant under local gauge transformations:

ψ(n)Uµ(n)ψ(n+ µ̂) −→ψ(n) g(n)† g(n)Uµ(n) g(n+ µ̂)† g(n+ µ̂)ψ(n+ µ̂)

= ψ(n)Uµ(n)ψ(n+ µ̂)
(1.15)

and, equivalently, the second part,

ψ(n)U−µ(n)ψ(n− µ̂) −→ψ(n) g(n)† g(n)U−µ(n) g(n− µ̂)† g(n− µ̂)ψ(n− µ̂)

= ψ(n)U−µ(n)ψ(n− µ̂) .
(1.16)

The field Uµ(n) links neighboring lattice sites n and n ± µ̂, therefore, the Uµ(n) are often
referred to as link variables. Inverting the left hand side of (1.16) and subsequently shifting all
sites n→ n+ µ̂ yields

U−µ(n) = Uµ(n− µ̂)−1 = Uµ(n− µ̂)† . (1.17)

Thus, the link variable in negative µ-direction is equal to the inverse link variable from the site
n− µ̂ in positive µ-direction, see also Fig. 1.1.

s s�
n n+ µ̂

Uµ(n)
s s�
n n+ µ̂

U−µ(n+ µ̂) = Uµ(n)†

Figure 1.1: Link variables in positive and negative µ-direction.

Using the fact that path ordered continuum gauge transporters reveal the same gauge
transformation properties as the link variables that we have just introduced, one can interpret
the link variables as a lattice version of the gauge transporter connecting two neighboring lattice
sites. This connection allows to relate the link variables to the continuum gauge fields,1

Uµ(n) = eiaAµ(n) . (1.18)

1 Be aware that we implicitly rescaled the continuum gauge fields gAµ → Aµ to obtain the inverse coupling
prefactor of the gauge part in the Lagrangian (1.1).
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Here it becomes obvious that, while the continuum gauge fields Aµ are elements of the algebra
su(3), the link variables are elements of the corresponding group SU(3).

By expanding Eq. (1.18) in powers of the lattice spacing, it is possible to show that the naive
lattice Dirac operator (1.14) (as well as the Wilson Dirac operator) agrees with its continuum
counterpart up to order O(a). The Symanzik improvement program [23], however, offers a
systematic way to reduce the errors of the fermionic Lagrangian to O(a2). To this end, all terms
that have the correct dimensionality and the symmetries of the QCD fermionic Lagrangian
must be included. This procedure will be discussed in more detail in Sec. 3.3.6.
To complete the discretization of QCD, it remains to find a term that describes the pure

gauge part of the Lagrangian. Naturally, we seek again a local expression that is invariant
under local gauge transformations. Moreover, it is easy to see that the trace over a closed loop
of link variables transforms trivially under gauge transformations due to the cyclic permutation
property of the trace. The shortest such closed loop is the so-called plaquette, which is defined
as

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)† Uν(n)†, (1.19)

where we used identity (1.17) to convert the links in negative µ̂, ν̂ direction. See Fig. 1.2 for an
illustration of the plaquette.

s

s

s

s

�

�

KL "
multiply

n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

Uµ(n)

Uµ(n+ ν̂)†

Uν(n+ µ̂)Uν(n)†

Figure 1.2: The gauge plaquette: the smallest closed loop of gauge links.

The simplest possible gauge Lagrangian, called after Wilson [13], is then constructed by
summing locally over all six plaquettes in the four dimensions:

LG(n) = 1
3β

∑
µ<ν

Re tr [1− Uµν(n)] . (1.20)

Here, β = 6/g2 is the commonly used abbreviation for the inverse coupling. Wilson’s gauge
term approximates the continuum equivalent up to order O(a2) and, similarly to the fermionic
part of the Lagrangian, one can systematically improve the order of the errors [23, 24].
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1.1.3 Simulating QCD

So far, our discussion of QCD omitted the fact that we target at describing a quantum theory.
In the following discussion, which is partially based on [25, 26], we quantize the discrete theory
and show how Euclidean correlation functions can be approximated by lattice Monte Carlo
simulations. From the Lagrangian density, we can derive the classical equations of motion
(Euler–Lagrange) whose solutions minimize the action. The action is a functional of the fields
and given by the integral of the Lagrangian density over space-time, on the lattice,

SQCD[ψ,ψ, U ] = SF [ψ,ψ, U ] + SG [U ] = a4 ∑
n∈Λ

LF (n) + a4 ∑
n∈Λ

LG(n) . (1.21)

In the path integral approach to quantization, all possible field configurations contribute,
as opposed to the classical theory where the minima are the only contributions. Each field
configuration is weighted with the exponential of the negative Euclidean action exp(−SQCD).
We are interested in the study of vacuum expectation values of observables O[ψ,ψ, U ] or,

as we will see in the next section, analogously in Euclidean correlators, which are, in general,
functionals of the quark and/or gluon fields. These can be obtained in the path integral
approach to quantization via

〈O[ψ,ψ, U ] 〉 =
∫
DU DψDψO[ψ,ψ, U ] e−SQCD[ψ,ψ,U ]∫

DU DψDψ e−SQCD[ψ,ψ,U ]
, (1.22)

where we integrate over all possible field configurations. It is important to stress that, while on
the right hand side we face an integral over the classical fields, the left hand side makes the
connection to quantum mechanical operators. Thus, the components of the gauge fields Uµ on
the right hand side are simply complex numbers. The fermionic fields ψ and ψ, however, are
anti-commuting Grassmann variables to account for Fermi–Dirac statistics. Note that we treat
the fields ψ and ψ as independent integration variables, whereas in the Minkowskian operator
formalism, these are related by ψ = ψ†γ0.
In particular, the integration measure for the gluon fields is defined as

DU =
∏
n∈Λ

∏
µ

dUµ(n) , (1.23)

where each integration measure dUµ(n) for fixed n, µ is a gauge invariant measure over the
continuous compact group SU(3), known as the Haar measure, which is normalized to∫

dUµ(n) = 1, n ∈ Λ, µ = 1, . . . , 4. (1.24)
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The fermionic integration measures over the Grassmann variables are defined as

DψDψ =
∏
n∈Λ

∏
a,α

dψa,α(n) dψa,α(n) . (1.25)

Here, a = 1, 2, 3 denotes the color index, α = 1, . . . , 4 stands for the Dirac index. When we
include more than one flavor, we sum over the flavors as well.
Let us assume for the moment that our observable is a functional of the gauge fields only,
O[U ], hence the only dependence of the fermionic fields of Eq. (1.22) lies in the fermionic part
of the action, which is a bilinear form in ψ and ψ, compare with (1.11). Then we can solve the
Gaussian integral over the Grassmann variables, which yields [27, 28]

∫
DψDψ exp

− ∑
n,m∈Λ

ψ(n)D(n,m)ψ(m)

 = det [D] . (1.26)

Here det [D] is referred to as the fermion determinant, which depends on the gauge fields only.
As an example of a fermionic field dependent observable, we consider the integral

∫
DψDψ ψ(n)ψ(m) exp

− ∑
n,m∈Λ

ψ(n)D(n,m)ψ(m)

 = det [D]D−1(n,m) , (1.27)

of the fermionic two-point function ψ(n)ψ(m), which will be of particular interest for hadron
spectroscopy, see Sec. 1.1.4.

As we have seen, for the examples Eqs. (1.26) and (1.27) we were able to explicitly integrate
out the fermion dependence of the path integral (1.22). Thereby, the fermionic part of the
action transformed into the fermion determinant and the fermionic two-point function got
contracted to the inverse Dirac operator – the quark propagator. In such cases, we can write
the path integral (1.22) as

〈O[U ] 〉 = 1
Z

∫
DU O[U ] e−Seff [U ] , (1.28)

where the effective action is given by

Seff [U ] ≡ ln det [D] + SG [U ] . (1.29)

In (1.28) we have introduced the partition function

Z =
∫
DU e−Seff , (1.30)
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which inherits its name from the similarity of the Euclidean path integral with the sum over
states in statistical physics.

At this point, we disposed of the Grassmann number dependence of the path integral, which
simplifies the numerical integration of expression (1.28) significantly. Nevertheless, the path
integral over the gauge fields contains way to many degrees of freedom to be tackled by direct
numerical methods. Instead one relies, motivated by the similarity to a statistical system, on
Monte Carlo techniques: a sequence of gauge field configurations Uµ(n)(i), i = 1, . . . , N, is
generated with a Boltzmann weight given by the effective action (1.29). Thereby lie the main
computational costs in the dependence of the weight factor on the fermion determinant. The
costs can be reduced drastically by setting the fermion determinant equal to one and thereby
neglecting the effects of dynamical quarks; this approximation is known as quenching. A widely
used algorithm that does take the effects of dynamical quarks into account is the hybrid Monte
Carlo (HMC) algorithm [29].

Once the Markov chain of gauge field configurations Uµ(n)(i), i = 1, . . . , N, has been generated,
vacuum expectation values of observables can be approximated as

〈O[U ] 〉 ≈ 1
N

N∑
i=1
O[U (i)] . (1.31)

1.1.4 Hadron spectroscopy

The quarks and gluons are the degrees of freedom of QCD, however these are not the states
we observe in nature. Instead, confinement binds quarks and gluons together to color neutral
objects, the hadrons. Measuring hadron masses on the lattice is a powerful ab initio calculation
to test the correctness of QCD. In the following discussion, we will denote the time index by t
instead of n4 or nt. It has to be understood, though, that we still assume a finite space-time
lattice, which has important consequences like discrete energy eigenstates. This discussion is
based on [30].
The Euclidean correlation function is defined as

〈O2(t)O1(0) 〉T =
tr
[
e−(T−t)Ĥ Ô2 e−tĤ Ô1

]
tr
[
e−TĤ

] , (1.32)

where T is a formal maximum time that we will send to infinity in the later discussion. We can
evaluate the trace in the basis of energy eigenstates and insert additionally a complete set of



1.1 Quantum chromodynamics on the lattice 11

energy eigenstates to obtain

∑
j,k 〈k| e−(T−t)Ĥ Ô2 |j〉 〈j| e−tĤ Ô1 |k〉∑

k 〈k| e−TĤ |k〉
=
∑
k e−(T−t)Ek 〈k| Ô2 |j〉 e−tEj 〈j| Ô1 |k〉∑

k e−TEk . (1.33)

Next, we normalize the lowest energy E0, i.e., the energy of the vacuum |0〉 to zero, thus the
higher energies, E1 ≤ E2 ≤ E3 ≤ . . . , will from now on correspond to the difference to the
vacuum’s energy. Moreover, we take the limit T →∞, which yields

lim
T→∞

〈O2(t)O1(0) 〉T =
∑
j

〈0| Ô2 |j〉 〈j| Ô1 |0〉 e−tEj . (1.34)

In this context it is worth mentioning that it follows from Eq. (1.34) that the Euclidean
correlator of one or more operators that all live at the same time t is equal to the vacuum
expectation value of these operators. Therefore, the terms correlator and vacuum expectation
value are often used synonymously. Furthermore, for the same reason, this holds for interpolators
and operators.
From the foregoing discussion we know how to calculate Euclidean correlators, which are

functionals of the quark and/or gluon fields, on the lattice. We are now in the position to study
the correlator of an hadron O, created out of the vacuum at time t = 0, which travels through
(Euclidean) time and gets annihilated at a later time t > 0,

〈O(t)O(0) 〉 =
∑
j

〈0| Ô |j〉 〈j| Ô† |0〉 e−tEj (1.35)

= A e−tE1
(
1 +O(e−t∆E)

)
. (1.36)

E1 is the lowest (discrete) energy state and ∆E denotes the energy difference to the first excited
state. The hadron interpolator O may consist of a quark and an anti-quark to build a meson,
e.g., a pion

Oπ(n) = ψ
d(n)γ5ψ

u(n) , (1.37)

where the u and d label the up and down quark flavors, respectively. Alternatively, O may
consist of three quarks to build a baryon, e.g., the proton

OP (n) = εabcψ
u
a (n)

(
ψub (n)TCγ5ψ

d
c (n)

)
. (1.38)

Here, εabc is the totally antisymmetric tensor and C refers to the charge conjugation matrix.
With the aim of extracting information of higher lying states of the particles under investiga-

tion, one may study the cross correlation matrix instead of a single correlator of type (1.35).
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The cross correlation matrix is given by

Cij(t) ≡ 〈Oi(t)Oj(0) 〉 (1.39)

where all the interpolators Oi are required to have the correct quantum numbers of the state
one is interested in. The interpolators can vary, e.g., in their Dirac structure or in the type of
quark sources being used. To implement different quark sources, one can for example adopt
Jacobi smeared sources [31, 32] of different width.

Solving the generalized eigenvalue problem of the cross correlation matrix Eq. (1.39),

C(t)v = λ(t)C(t0)v , (1.40)

gives an estimate for the different energy states by simply identifying the k-th eigenvalue
λk(t) with the exponential of the energy state Ek [33, 34, 35]. Moreover, the corresponding
eigenvectors v indicate the overlap of different states. The above described method is in the
literature known by the name variational analysis.

1.2 Chiral symmetry

This subsection discusses the very characteristic symmetry of QCD that is, in particular
its dynamical breaking, responsible for the diverse hadron spectrum in nature – the chiral
symmetry. We first list the symmetry for one and for two flavors before we discuss the explicit
and spontaneous breaking of the chiral symmetry (this part is based on [36]). We finalize the
discussion by presenting the Ginsparg–Wilson equation, which allows for a realization of exact
chiral symmetry on the lattice. Furthermore, we give an example for an exact solution to it and
present the approximate solution, the chirally improved Dirac operator, which will be adopted
in the remainder of this work.

1.2.1 Chiral symmetry in the continuum

In the massless limit, the QCD Lagrangian (1.1) can be separated into two identical parts
for the left-handed quarks ψL and the right-handed quarks ψR, which are obtained by the
projections

ψL = 1
2(1− γ5)ψ , ψR = 1

2(1+ γ5)ψ , (1.41)

and accordingly for the conjugate fields ψ where the projection acts from the right.
In the following we list a set of transformations of the left- and right-handed fields under

which the Lagrangian remains invariant. Therefore, we start with one flavor of dynamical
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quarks and then generalize to two flavors.

One flavor of quarks

For the moment we consider QCD with one single flavor of massless quarks. Then, the QCD
Lagrangian is invariant under two independent global variations of phases

ψL = eiθL ψL ,

ψR = eiθR ψR
(1.42)

and hence the underlying symmetry group is

U(1)L ×U(1)R . (1.43)

Note that the set of rotations (1.42), acting on the left- and right-handed quark fields, is
equivalent to the following vector and axial transformations acting on the fields ψ,

ψ = eiθV ψ , (1.44)

ψ = eiθAγ5 ψ , (1.45)

which belong to the symmetry group

U(1)V ×U(1)A . (1.46)

Two flavors of quarks

Now we generalize the symmetries of the QCD Lagrangian to more than one flavor. In particular,
we set Nf = 2 but the discussion holds formally for arbitrary Nf . LQCD is insensitive to the
specific flavors of quarks, one can substitute the two quark flavors by properly normalized
orthogonal linear combinations of the latter, which corresponds to a rotation in isospin space.
Moreover, since the left- and right-handed components are decoupled, two independent isospin
rotations for the two components can be performed:

ψL = e
i
2 θ
a
Lτ

a
ψL ,

ψR = e
i
2 θ
a
Rτ

a
ψR .

(1.47)

Here, τa, a = 1, 2, 3 are the Pauli-matrices that, multiplied by factors one half, act as the
generators of the group SU(2). Accordingly, the symmetry group for the set of chiral rotations
(1.47) is the chiral symmetry

SU(2)L × SU(2)R . (1.48)
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Again, we can represent the independent left and right rotations equivalently by independent
isospin and axial rotations

ψ = e
i
2 θ
a
V τ

a
ψ , (1.49)

ψ = e
i
2γ5θaAτ

aγ5 ψ , (1.50)

and the symmetry group can formally be denoted in the same fashion as in the one flavor case
by

SU(2)V × SU(2)A , (1.51)

where it has to be stressed, though, that the axial set of rotations “SU(2)A” does not form a
group.

Besides, the QCD Lagrangian for two quark flavors remains invariant under variations of the
common phase of the left-handed and right-handed quarks of both flavors Eq. (1.42) and we
can summarize the symmetries for the massless QCD Lagrangian as

SU(2)L × SU(2)R ×U(1)A ×U(1)V . (1.52)

1.2.2 Breaking of the chiral symmetry

Explicit breaking

The full set of symmetries (1.52) of the QCD Lagrangian (1.1) holds only in the classical
theory with massless fermions. In the quantized theory, the noninvariance of the fermion
determinant under U(1)A renders the fermion integration measure noninvariant and thus breaks
the flavor singlet axial symmetry. This explicit breaking of the U(1)A symmetry is known as
axial anomaly.

When we allow the two quark flavors to have nonvanishing degenerate masses, the mass term
in the Lagrangian breaks the remaining symmetry down to

SU(2)V ×U(1)V . (1.53)

SU(2)V is the isospin symmetry, which is approximately preserved in nature for the up and
down quarks and accounts for the almost degenerate masses of the proton and the neutron.
The U(1)V symmetry that, in contrast to SU(2)V , even survives nondegenerate quark masses,
conserves the baryon number.
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Dynamical breaking

The masses of the two lightest quark flavors in nature, the up and down quarks, are roughly
three orders of magnitude smaller than the typical scale of QCD, which gives reason to expect
the full symmetry (1.52), except for the singlet flavor axial symmetry that is broken explicitly
by the anomaly, to be approximately conserved.

If the ground state of the theory is not invariant under the same set of transformations as the
Lagrangian, one speaks of spontaneous symmetry breaking and the theory is said to be in the
Nambu–Goldstone mode [37, 38, 39]. The latter is opposed to the Wigner–Weyl mode, which
is expected to show excitations grouped into representations of the chiral group. In particular,
parity doubling is expected, which is not seen in nature. Therefrom one can conclude that
the isospin axial chiral symmetry (1.50) is broken spontaneously by the dynamics of QCD. In
contrast, the vector part of the chiral symmetry cannot be broken spontaneously in accordance
with the Vafa–Witten theorem [40].

The noninvariance of the vacuum with respect to the three axial transformations requires
the existence of three massless isospin triplet pseudoscalar Goldstone bosons, which can be
identified with the pions. The pions are not exactly massless in nature, which may be attributed
to the explicit symmetry breaking by the small nonvanishing mass of the up and down quarks.
Nevertheless, the pions are much lighter than the other quark bilinear excitations like, e.g., the
rho.
A nonvanishing chiral condensate 〈ψ(x)ψ(x) 〉 indicates that the system is in the Nambu–

Goldstone mode. The chiral condensate is not invariant with respect to both, the flavor singlet
axial rotation and the axial rotation in isospin space.

1.2.3 The Ginsparg–Wilson equation

The essence of the chiral symmetry in the continuum can be condensed to the fact that the
Dirac operator has to anti-commute with γ5 in order to obtain a Lagrangian invariant under
(1.52), i.e.,

{D, γ5} = 0 . (1.54)

As stated above, the Nielsen–Ninomiya theorem [20, 21, 22] constrains the lattice action to be
invariant under (1.52) or to maintain other crucial properties like locality and a theory free of
fermion doublers. In this sense it is not possible to implement chiral symmetry on the lattice in
the naive way (1.54).

However, Ginsparg and Wilson [41] proposed to replace the above continuum expression by a
lattice version,

{D, γ5} = aDγ5D , (1.55)
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which agrees with Eq. (1.54) in the continuum limit. Dirac operators D that fulfill the Ginsparg–
Wilson (GW) equation (1.55) then allow for an exact chiral symmetry on the lattice. Therefore,
the transformations of type (1.45) are replaced by a lattice version [42]

ψ = eiθAγ5(1−a2D) ψ , (1.56)

and equivalently for the fields ψ, which converge to the continuum transformations in the limit
a→ 0.

Only many years after the discovery of the GW equation (1.55), two independent approaches
succeeded to provide a solution to the nonlinear equation, the most prominent one being
Neuberger’s overlap operator [43, 44].

1.2.4 The chirally improved Dirac operator

The overlap operator, while yielding exact chiral symmetry on the lattice, is computationally
very expensive. Another approach to tackle the problem of implementing chiral symmetry on
the lattice is the chirally improved (CI) Dirac operator [45, 46], which we adopt as the fermion
discretization of choice in the remainder of this work.
The CI Dirac operator solves the GW equation only approximately. It is obtained by

expanding the most general Dirac operator in a basis of simple operators,

DCI (x,y) =
16∑
i=1

c(i)
xy(U)Γi +m01. (1.57)

Here, the sum runs over all elements Γi of the Clifford algebra and the coefficients c(i)
xy(U) consist

of path ordered products of the link variables U connecting lattice sites x and y. Inserting this
expansion into the GW equation then turns into a system of coupled quadratic equations for
the expansion coefficients of the DCI . This expansion provides for a natural cutoff that turns
the quadratic equations into a simple finite system.
The ansatz is constructed such that all symmetries of the fermionic action are maintained

and moreover γ5-hermiticity is imposed.

1.3 Confinement

This subsection is dedicated to a brief discussion of confinement, which is, besides the dynamical
breaking of the chiral symmetry, the second characteristic phenomenon of QCD. A popular
way of defining confinement, besides many possible choices, see [47] for a detailed discussion,
is the existence of a linear rising potential between two static quarks. However, then, strictly



1.4 Eigenvalues of the Dirac operator 17

speaking, QCD is not confining since the separation of two static quarks will eventually create
a quark anti-quark pair out of the vacuum as soon as it is energetically preferred, this is known
as string-breaking.

Related with this is another symmetry of SU(Nc) Yang–Mills theories, i.e., pure gauge theory
without quarks: the center symmetry. The center of a group consists of those group elements
that commute with all other elements of the group. For SU(Nc), the center group is ZNc and
is given by the elements zn1 with zn = exp(2πin/Nc) and n = 0, . . . , Nc − 1. The pure gauge
Lagrangian on the lattice (1.20) is invariant under the global transformation

U0(x, t0)→ zU0(x, t0) for all x and fixed t0. (1.58)

Spontaneous breaking of this symmetry at high temperatures as well as explicit breaking by
quark fields, occurs in conformity with the vanishing of the asymptotically linear rising potential
between static color sources: if center symmetry is unbroken, the energy of an isolated color
charge is infinite, while, on the contrary, if the symmetry is spontaneously broken, the energy
of an isolated color charge is finite. The expectation value of the Polyakov loop serves as an
order parameter for the breaking of the center symmetry.

For the later chapters it will be important to have a definition of confinement that does not
rely on properties of the gauge background. Later we will modify the quark propagators, which
stem from the inversion of the Dirac operator on given gauge field configurations, a posteriori.
Thus, in order to check for confining properties, it does not make sense to investigate the
underlying gauge fields that have not been touched.

Therefore, we will focus on color-confinement in the later discussion, which is to be understood
as the absence of color-charged asymptotic particle states. In other words, this refers to the
fact that free quarks are never observed in nature. In practice we will check for the persistence
of bound particle states. In has to be stressed, however, that this does not necessarily imply a
underlying linearly rising potential.

1.4 Eigenvalues of the Dirac operator

The eigenvalues of the Dirac operator, in particular the low lying eigenvalues, reflect several
physical phenomena. Crucial properties of the Dirac eigenspectrum, as well as the connection
between the low lying eigenvalues and the breaking of the chiral symmetry, will be covered
below.
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1.4.1 Topology

The following discussion is based on [48]. The γ5-hermiticity of lattice Dirac operators (Sec. 1.4.2)
ensures that its eigenvalues come either in complex conjugate pairs or are purely real. The
overlap Dirac operator, which fulfills the GW equation in the form of (1.55), has all its
eigenvalues lying on a circle1 and thus maintains exact zero modes (in the chiral limit). Other
operators which do not obey the GW equation, in contrast, exhibit a scattered spectrum and
would-be zero modes are shifted along the real axis.

The Atiyah–Singer index theorem [49] relates the left- and right-handed zero modes

γ5v0 = ±v0 with Dv0 = 0, (1.59)

of the massless Dirac operator to the topological charge Qtop. Its lattice version [50] reads
Qtop = n− − n+ where n− and n+ denote the left- and right-handed zero modes, i.e., the
number of eigenmodes with eigenvalue zero for which (1.59) holds. In the picture of instanton
liquids, the localized topological configurations, i.e., the topological lumps of different charges
get mixed and one cannot assume that the zero eigenvalues survive unperturbed but move
towards the imaginary axis. It can be shown that the topological charge that results from the
would-be zero modes is responsible for the noninvariance of the fermion integration measure
under flavor singlet axial rotations of the form (1.56).
The Banks–Casher relation [51] connects the emerging density of eigenvalues ρ(0) near the

origin to a nonvanishing chiral condensate,

〈ψψ〉 = −πρ(0). (1.60)

Whereby it is crucial to first take the infinite volume limit at finite quark mass since strictly
speaking, in a finite volume, spontaneous breaking of a symmetry cannot occur. Subsequently,
the chiral limit m→ 0 is taken.

1.4.2 Spectral decomposition

Here we summarize important spectral properties of the Dirac operator and the hermitian
Dirac operator. To this end we give formulas how these can be represented by their eigenvalues
and -vectors. The Dirac operator of QCD on a four dimensional lattice has the dimensionality
N = 12 |Λ| where the factor 12 is the product of color and Dirac index dimensions and
|Λ| = N3

sNt is the number of lattice points.

1 There are more general GW fermions, where the eigenvalues lie between two circles.
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In general, the Dirac operator with a finite cut-off is a non-normal operator, i.e., it does not
commute with its hermitian conjugate,

[D,D†] 6= 0. (1.61)

The normality of an operator D̃ ensures that the operator’s eigenvectors build an orthogonal
basis of the underlying (complex) vector space and thus the operator can be diagonalized by a
unitary transformation U ,

Λ = U †D̃U, (1.62)

where now Λ denotes the diagonal matrix of the operator D̃ that consists of its eigenvalues.
Non-normal operators, on the other hand, can – if at all – only be diagonalized by a non-unitary
similarity transformation X,

Λ = X−1DX. (1.63)

Eq. (1.63) is equivalent to

DX = XΛ ⇐⇒ X−1D = ΛX−1 (1.64)

from which it becomes apparent that the left and right eigenvectors, which are defined by

〈Li|D = λi 〈Li| , D |Ri〉 = λi |Ri〉 , i = 1, . . . , N, (1.65)

i.e., the rows of X−1 and the columns of X, respectively, differ. The latter stems from the
non-unitarity of the basis transformation: X−1 6= X†. Despite the fact that the sets of left and
right eigenvectors do not build an orthogonal basis by themselves,

〈Li|Lj〉 6= δij , 〈Ri|Rj〉 6= δij , (1.66)

the relation X−1X = 1 yields the following biorthogonality condition

〈Li|Rj〉 = δij . (1.67)

The biorthogonality condition ensures that non-normal operators D can be expressed in a
modified spectral representation that includes left and right eigenvectors,

D =
N∑
i=1

λi |Ri〉 〈Li| . (1.68)
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It has to be stressed that when the eigenvectors are normalized according to

〈Li|Li〉 = 1, 〈Ri|Ri〉 = 1, (1.69)

the biorthogonality (1.67) is only fulfilled up to a constant and (1.68) has to be normalized
with factors 1/ 〈Li|Ri〉, accordingly.

Wilson type Dirac operators are γ5-hermitian,

D = γ5D
†γ5 , (1.70)

thus the Dirac operator’s eigenvalues are either real or come in complex conjugate pairs. The
γ5-hermiticity of D enables us to derive a relation between the left and right eigenvectors,

γ5D
†γ5 |Ri〉 = λi |Ri〉

⇐⇒ D†γ5 |Ri〉 = λiγ5 |Ri〉

⇐⇒ 〈Ri| γ5D = λ∗i 〈Ri| γ5 .

(1.71)

Hence, the left eigenvectors to eigenvalue λi equal the hermitian conjugate right eigenvectors,
multiplied by γ5 from the right, to the complex conjugate eigenvalue λ∗i .
The inverse Dirac operator is then given by

D−1 =
N∑
i=1

λ−1
i |Ri〉 〈Li| . (1.72)

The columns of D−1 build the quark propagators to different point-sources. An alternative way
to represent the Dirac operator by a spectral decomposition is to use its γ5-hermiticity (1.70).
From the latter it follows that the hermitian Dirac operator D5 ≡ γ5D is a normal operator,
i.e., there exists an orthogonal basis of eigenvectors |wi〉 such that D5 can be decomposed as

D5 =
N∑
i=1

µi |wi〉 〈wi| (1.73)

with µi denoting the (real) eigenvalues of D5. The inverse of (3.30) yields

D−1 =
N∑
i=1

µ−1
i |wi〉 〈wi| γ5 . (1.74)
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1.4.3 Truncating the quark propagator

The main underlying idea of this thesis lies in the artificial restoration of the chiral symmetry by
removal of the chiral condensate in the valence quark sector stepwise in the sense of eliminating
the density of the near zero modes, see Eq. (1.60).
More precisely, we aim at constructing hadron correlators out of quark propagators that

exclude the lowest part of the Dirac spectrum. Thus, we split the Dirac operator into a low-mode
part and a reduced part,

D =
k∑
i=1

λi |Ri〉 〈Li|+
N∑

i=k+1
λi |Ri〉 〈Li| . (1.75)

where k is a parameter that we will vary in the range from zero to a few hundred modes. In
order to construct the reduced or truncated quark propagators,

Sred(k) =
N∑

i=k+1
λ−1
i |Ri〉 〈Li| , (1.76)

it is sufficient to calculate the lowest k eigenvalues and construct the low-mode part of the
quark propagator according to

Slm(k) =
k∑
i=0

λ−1
i |Ri〉 〈Li| . (1.77)

Subsequently, the low-mode part is subtracted from the full propagators in order to obtain the
reduced propagators,

Sred(k) = S − Slm(k) . (1.78)

The full quark propagator is calculated in the standard way by inverting the Dirac matrix for
all color and Dirac index combinations on a given source b,

∑
n∈Λ

D(m,n)S(n) = b(m) . (1.79)

1.4.4 Connection to lattice momenta

Finally, we derive a relation between the eigenvalues of the free Dirac operator and the discrete
momenta on the lattice.1 To this end, we first stress that the eigenvalues of the Dirac operator

1 Thanks to Christof Gattringer for pointing this out.
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D(x, y) remain the same after a Fourier transform to momentum space since the Fourier
transform is a unitary transformation. For the definition of the lattice momenta see (6.23).
Wilson-type Dirac operators consist of a Dirac scalar and a Dirac vector part,

D(p) = s1+ ik/ , (1.80)

where k/ =
∑
µ γµkµ(p) are the lattice momenta in Feynman’s slash notation. With s the

mass term plus, e.g., a Wilson term, which depends on p as well, is denoted. Without gluon
interactions, D(p) is diagonal in color and momentum space and therefore the Dirac matrix is
block-diagonal with the 4× 4 blocks stemming from the internal Dirac structure.
In order to yield the eigenvalues λ of a block of D(p) for fixed p (and thus fixed k) one

demands the characteristic polynomial,

P (λ) = det [λ1−D(p)] = det [(λ− s)1− ik/] , (1.81)

to be equal to zero. From the latter we pull out a factor (λ− s) to obtain

(λ− s)4 det
[
1− 1

λ− s
ik/

]
= (λ− s)4 exp

(
tr
[
ln
(
1− ik/

λ− s

)])
(1.82)

where we used a common trick to expand the determinant. The logarithm of a matrix is defined
in terms of its power series which reads

(λ− s)4 exp
(
tr
[
−
∞∑
n=1

1
n

(
ik/

λ− s

)n])
. (1.83)

When evaluating the trace we use the fact that the trace over terms with odd n vanishes and
moreover the identity k/2 = k21,

(λ− s)4 exp
(
−
∞∑
n=1

1
2n

( 1
λ− s

)2n
tr
[
(ik/)2n

])
(1.84)

= (λ− s)4 exp
(
−
∞∑
n=1

4
2n

(
−k2

(λ− s)2

)n)
(1.85)

where the factor of 4 stems from the trace over the identity. We substitute back the power
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series with the logarithm and simplify

(λ− s)4 exp
(
−2

∞∑
n=1

1
n

(
−k2

(λ− s)2

)n)
(1.86)

=(λ− s)4 exp
(

2 ln
(

1 + k2

(λ− s)2

))
(1.87)

=(λ− s)4
(

1 + k2

(λ− s)2

)2

(1.88)

=
(
(λ− s)2 + k2

)2
. (1.89)

Requiring the characteristic polynomial to be equal to zero is then equivalent to

(λ− s)2 + k2 = 0 ⇐⇒ λ = s± i |k| . (1.90)

Note that each of the two eigenvalues is degenerate.
We see that (1.90) reveals a connection of the lowest eigenvalues of the free Dirac operator

to the lowest momenta on the lattice. Turning on the interactions with the gluon fields can
be formally accounted for by dressing the terms of (1.80) with momentum dependent dressing
functions on each configuration. The difficulty is, though, that the interacting Dirac operator is
no longer of block-diagonal form, which renders the derivation of an analog analytical connection
impossible. Nevertheless, the similarity of the overall shape of the eigenspectrum of free fermions
compared with interacting fermions, see e.g. [52], is a strong indication that the dynamics
of QCD do not invalidate the main feature of (1.90) which is the relation of low lying Dirac
eigenmodes to low momenta on the lattice.





Chapter 2

Unbreaking chiral symmetry

We have now collected all necessary basics so that we are in the position to continue with the
presentation of the first publication which resulted from the work on the thesis’ subject. This
chapter consists of the article

• [1] C. B. Lang, Mario Schröck, “Unbreaking chiral symmetry”, Phys. Rev. D 84 (2011)
087704.

Here we studied ground states of isovector mesons under Dirac low-mode truncation. We
explored the truncation range which is of physical interest and gained first insights in the
consequences of Dirac low-mode removal on low lying mesons.

2.0 Abstract

In quantum chromodynamics (QCD) the eigenmodes of the Dirac operator with small absolute
eigenvalues have a close relationship to the dynamical breaking of the chiral symmetry. In
a simulation with two dynamical quarks, we study the behavior of meson propagators when
removing increasingly more of those modes in the valence sector, thus partially removing effects
of chiral symmetry breaking. We find that some of the symmetry aspects are restored (e.g., the
masses of ρ and a1 approach each other) while confining properties persist.

2.1 Motivation and introduction

Dynamical chiral symmetry breaking in QCD is associated with the low lying spectral modes
of the Dirac operator D [51]. They affect the path integral weight of the gauge configurations
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through the determinant of D. As indicated by the Atiyah-Singer index theorem [49], the exact
zero modes are related to topological excitations, the instantons. For Dirac operators violating
chiral symmetry these are real eigenmodes. The nearby nonreal modes are also thought to be
related to composed structure of, e.g., overlapping instantons [53].1

In a series of papers [14, 15, 16] it was emphasized that low-modes saturate the pseudoscalar
and axial vector correlators at large distances and do not affect the part where high lying states
appear. In [16, 17] low-mode saturation and also effects of low-mode removal for mesons were
studied for quenched configurations with the overlap Dirac operator [43, 44].
Subsequently low-modes were utilized to improve the convergence of the determination of

hadron propagators [16, 17, 18, 54] (see also the recent study [55, 56] comparing the efficiency
when using the low-modes of the Dirac operator or the hermitian Dirac operator, where strong
dependence on the parity of the hadron states was presented).

Associating the low-mode sector with the nonperturbative chiral symmetry breaking and the
condensate [51], a complementary question is how important it is for confinement and mass
generation of hadrons. Here we study what happens if one removes up to 512 low lying modes
from the valence quark sector. We compute propagators of the pion and other mesons and
determine the effect of this removal on the mass spectrum. This way we want to shed light on
the role of the condensate related to the spectral part of the Dirac operator in confinement and
chiral symmetry breaking. Our analysis is done for configurations generated for two light, mass
degenerate dynamical quark flavors. The removal of the low lying modes is effective only in
the valence quarks sector. However, as will be seen, this already has significant impact on the
meson mass spectrum.
In [57, 58] it has been conjectured that chiral symmetry is “effectively restored” for highly

excited hadrons, in the sense that valence quarks become less affected by the quark condensate.
This situation is similar to ours, where we artificially suppress the condensate as seen by the
valence quarks. In the context of effective restoration such an approach has been discussed
already in [16, 19].

2.2 Reduced Dirac operator

Lattice Wilson Dirac operators and approximate Ginsparg-Wilson Dirac operators are γ5-
hermitian, γ5Dγ5 = D†, but non-normal, thus their spectral representation has real and
complex eigenvalues and the left and right eigenvectors are bi-orthogonal, i.e. 〈Li|Rj〉 = δij .

1 Even when studying the low lying modes in quenched gauge ensembles one observes nonvanishing density
and also the Gell-Mann–Oakes–Renner relation works down to small values of the valence quark mass until
quenched chiral logs destroy the leading chiral symmetry breaking behavior.
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The so-called hermitian Dirac operator D5 ≡ γ5D has real eigenvalues µi and the eigenvectors
are orthogonal.
We want to construct meson correlators from valence quark propagators that exclude the

lowest part of the Dirac spectrum. There are two alternative definitions of reduction: based on
eigenmodes of D or based on eigenmodes of the hermitian Dirac operator. We introduce the
reduced quark propagator via the spectral representation of D5,

Sred5(k) = S − Slm5(k) ≡ S −
∑
i≤k

µ−1
i |vi〉〈vi|γ5 . (2.1)

Another alternative works with the bi-orthogonal eigensystem of D. The two types of truncation
are not equivalent. We first tested the convergence of the low-mode approximation and, as has
been observed in [56], find a clearly slower convergence rate for the standard non-hermitian
as compared to the hermitian Dirac operator. In our study we therefore concentrate on our
results from truncating the hermitian Dirac operator.

2.3 Chiral symmetry and its breaking

The nonvanishing quark masses of the two lightest quark flavors are relatively small in comparison
to the typical QCD scale. Neglecting the masses of the u and d quarks the QCD Lagrangian is
invariant under the symmetry group

SU(2)L × SU(2)R ×U(1)V ×U(1)A . (2.2)

The chiral symmetry SU(2)L × SU(2)R consists of independent transformations in the isospin
space for the left- and right-handed quark fields and can be represented equivalently by
independent isospin and axial rotations for the combined quark fields.
The isospin axial transformation mixes states with opposite parity but the same spin.

Depending on quantum numbers the chiral partners can have the same or different isospin. The
nondegenerate masses of parity partners indicate the dynamical (spontaneous) breaking of this
chiral symmetry with the order parameter 〈ψψ〉, the chiral condensate. Spontaneous breaking
of the chiral symmetry leads to the appearance of the pseudoscalar Goldstone bosons, the pions.
The flavor singlet axial transformation symmetry U(1)A is broken explicitly due to the

noninvariance of the fermion integration measure, the so-called axial anomaly. It is not a
symmetry of the quantized QCD. Consequently no isosinglet Goldstone boson exists within the
two-flavor QCD and the η meson(s) are heavier then the pion, attributed to the anomaly. In
addition to the anomaly also the chiral condensate breaks this symmetry.
Both symmetry breaking signals are related to low lying modes of the Dirac operator. The
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axial anomaly involves the topological charge of the gauge configuration, which is proportional
to the net number of exactly chiral (zero-)modes via the Atiyah-Singer index theorem [49]. The
chiral condensate is associated with the density of the Dirac operator’s low lying (but nonzero)
modes [51]. The nonvanishing quark condensate indicates breaking of both symmetries.

2.4 Gauge configurations

For our analysis we used 161 gauge field configurations [59, 60] of lattice size 163 × 32; with
the lattice spacing a = 0.144(1) fm this corresponds to a spatial size of 2.3 fm. The simulation
includes two degenerate flavors of light fermions and a corresponding pion mass of mπ =
322(5) MeV. For the dynamical quarks of the configurations as well as for the valence quarks
the so-called chirally improved Dirac operator [45, 46] has been used. This operator is an
approximate solution to the Ginsparg–Wilson equation and therefore exhibits better chiral
properties than the simpler Wilson Dirac operator while being less expensive by an order
of magnitude – in terms of computation time – in comparison to the chirally exact overlap
operator.

We calculated up to the lowest 256 eigenmodes of the Dirac operator D and up to lowest the
512 eigenmodes of the hermitian operator D5 using ARPACK which is an implementation of
the Arnoldi method to calculate part of the spectrum of arbitrary matrices [61].
The quark propagator S is determined by inverting the Dirac operator for a given source.

Instead of using point sources we use Jacobi smeared sources [31, 32] that are approximately
of Gaussian shape. Their shape was adjusted to a width of about 0.27 fm [59]. The low-mode
contribution Slm5(k) to the quark propagator, see (2.1), has to be multiplied with the same
sources as the full propagator S in order to achieve the correct reduced propagators Sred5(k).

2.5 Mesons

We restrict ourselves to the study of isovectors, in particular, the chiral partners:

• The vector mesons ρ (JPC = 1−−) with interpolating fields u(x)γid(x) and u(x)γ4γid(x)
and a1 (JPC = 1++) with interpolating field u(x)γiγ5d(x); in a chirally symmetric world
the vector and the axial vector interpolator get mixed via the isospin axial transformations.

• The pseudoscalar π (JPC = 0−+) with interpolating fields u(x)γ5d(x) and u(x)γ4γ5d(x).
We also study the scalar a0 (JPC = 0++), u(x)d(x), which would get mixed with
u(x)γ5d(x) via the U(1)A transformation.

(In the interpolators γ4 denotes the Dirac matrix in Euclidean time direction.)
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We compute from the quark propagators meson propagators, projected to vanishing mo-
mentum and determine the hadron masses from a range of Euclidean time values where the
correlation function exhibits exponential decay. The final errors are statistical only and obtained
by standard jackknife elimination sampling.

2.6 Results

2.6.1 Low-mode sector

Figure 2.1 shows the integral over the distribution H(|µ|) of the (real) eigenvalues of D5. The
scale is set by the lattice spacing. There is a transition region up to roughly twice the size of the
quark mass (for this simulation the unrenormalized mass calculated from the axial Ward identity
is 15MeV [60]) corresponding to O(16) eigenmodes, as also observed in, e.g., [62, 63, 64, 65]. As
will be seen below, this is in accordance with the behavior observed for the meson propagators.

For the overlap operator the real eigenvalues correspond to exact chiral modes, the zero
modes. This is no longer true for Wilson-type operators. There one may associate zero modes
with real eigenvalues, although there chirality is not unity. For the hermitian Dirac operator
there is no simple method to identify these would-be zero modes, and thus all we can say is
that the lowest eight modes include a significant number (if not all) of the would-be zero modes
(instantons).

Before we construct meson correlators out of reduced quark propagators, let us first consider
meson correlators approximated by the lowest k modes only, using propagators Slm5(k), see
(2.1).

In Fig. 2.2 we compare the pseudoscalar correlator using standard full propagators to the
correlators using only the lowest modes of the hermitian Dirac operator D5. For the two
pseudoscalar operators the exponential pion decay behavior sets it much earlier (at lower
numbers of eigenmodes) for the interpolator uγ5d than for the other interpolator uγ4γ5d.
Clearly the first one is stronger dominated by the low lying modes than the second. The
large time region is well described by the low-modes whereas the short time region – where
excited states dominate – gets saturated much more slowly. Comparing with the result for an
equivalent approximation for the non-hermitian Dirac operator (not shown here), we find that
less eigenmodes of D5 are needed to obtain a similar quality of approximation of the correlators
with full propagators. These results agree with the observations in [16, 17, 56].

2.6.2 Removing the low-mode sector

Figure 2.3 shows the meson propagators for various stages of low-mode removal, always in
comparison with the full propagator, and Fig. 2.5 combines the corresponding mass fits to the



30 Chapter 2 Unbreaking chiral symmetry

32
64

128

256

512

 0  50  100  150  200  250

30 44 71 117 186 276

∫ 0µ
 H

(|
ν|

) 
d
|ν

|

µ [MeV]

Figure 2.1: The integrated eigenvalue density for the lowest 512 (absolute) eigenvalues of D5.
The eigenvalues are scaled according to the lattice spacing. The number on the upper axis indi-
cates the values of µ where there are 16, 32, 64, 128, 256 and 512 eigenvalues below that value.

regions of exponential behavior.
All mass values (except for the ρ) exhibit a strong dependence on the truncation of the

lowest eigenmodes; from truncations levels of ∼ 16 modes upwards (corresponding to quark
masses of approximately 30MeV) all mass values then follow a roughly parallel, rising behavior.
The range of exponential behavior of the correlators shrinks, as can be seen in the log-plots in
Fig. 2.3.

The effective mass plots (the local two-point approximation of the derivative of the logarithm
of the correlators) in Fig. 2.4 indicate the regions, where an exponential fit to the correlators has
been done. We find that the fluctuation typically decreases with increasing reduction. This may
be related to the relative importance of the noisy low lying modes in the quark propagators.

In [66] the parity-chiral group and the effect of symmetry breaking on the meson spectrum is
discussed. For example, whereas the U(1)A breaking lifts the degeneracy between pion and a0

(and between η and f0) the breaking of the chiral SU(2)L × SU(2)R symmetry is related to the
mass differences of pion and f0 (and a0 and η). From Fig. 2.5 we find drastic sensitivity on
low-modes for both, the pion interpolator masses and the a0 mass. At low truncation levels the
a0 mass rapidly drops; it does not drop down to the pion mass value. This might indicate some
remnant of the anomaly breaking for the J = 0 states.
The pion interpolators exhibit a puzzling behavior. The classical pion interpolator uγ5d

quickly loses its exponential behavior at larger (Euclidean) distances; only a more massive
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Figure 2.2: Low-mode contribution to the correlators for the JPC = 0−+ sector in comparison
to the correlators from full propagators with interpolators (a) uγ5d and (b) uγ4γ5d. The number
of included modes is shown in the legend.

decay signal is observed at smaller distances (Fig. 2.3). From truncation level 16 onwards we
therefore do not exhibit mass values in Fig. 2.5 for that interpolator. A fit to the very small
time slices gives a mass approaching the mass value from the second interpolator uγ4γ5d with
the pion quantum numbers, which couples due to PCAC (proportional to the quark mass).
For the JPC = 1−− vector meson ρ there are two chiral representations, which correspond

to the vector interpolator uγid and (Dirac-)tensor interpolator uγ4γid. Their chiral partners
[66] are the a1 and the h1 mesons, respectively. We did not determine the h1 mass, since its
interpolator includes disconnected graphs (it is an I = 0 state). There is no noticeable splitting
between the two ρ-interpolators for all stages of truncation. We do find, however, intriguing
behavior comparing the ρ mass with the a1 result. Starting out quite differently for the full
quark propagator, the masses approach each other and are compatible with each other from
truncation level 8 onwards. This indicates restoration of the SU(2)L × SU(2)R symmetry for
J = 1 states. The very fact that all three interpolators (vector, tensor and axial vector) give
the same mass hints to the restoration of the SU(2)L × SU(2)R ×U(1)A symmetry for J = 1
states. The latter could be reliably concluded, however, only after studying of the h1 meson.



32 Chapter 2 Unbreaking chiral symmetry

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30
t

(a)

full
red5(4)

red5(16)
red5(128)
red5(512)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30
t

(b) full
red5(2)

red5(16)
red5(128)
red5(512)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30
t

(c) full
red5(4)

red5(16)
red5(128)
red5(512)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30
t

(d) full
red5(4)

red5(16)
red5(128)
red5(512)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30
t

(e) full
red5(4)

red5(16)
red5(128)
red5(512)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30
t

(f) full
red5(4)

red5(16)
red5(128)
red5(512)

Figure 2.3: Correlation functions for the reduced interpolators as compared to the correlators
from full propagators. Top: JPC = 0−+ with interpolators (a) uγ5d, (b) uγ4γ5d. Middle: JPC =
1−− with (c) uγid, (d) uγ4γid. Bottom: Reduced (e) JPC = 0++ (ud) and (f) JPC = 1++

(uγiγ5d).
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Figure 2.4: Effective mass plots for the reduced interpolators as compared to the full propaga-
tors. For the notation (a-f) see Fig. 2.3.
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2.7 Conclusions

The low lying eigenvalues of the Dirac operator are usually associated with chiral symmetry
breaking. We have computed hadron propagators while removing increasingly more of the low
lying eigenmodes of the Dirac operator. This allows us to study their influence on certain hadron
masses. Because of the relationship of the low eigensector with chiral symmetry breaking, this
amounts to partially restoring chiral symmetry (in the valence quarks).

We find drastic behavior for some meson interpolators when starting to remove low eigenmodes.
At truncation level 16 the behavior saturates and then the mass values rise uniformly with
roughly parallel slopes. The confinement properties remain intact, i.e., we still observe clear
bound states for most of the studied isovector (scalar, axial vector and vector) mesons. An
exception is the pion, where no clear exponential decay of the correlation function is seen in
the uγ5d interpolator, but a massive state is seen in the uγ4γ5d interpolator. The mass values
of the vector meson chiral partners a1 and ρ approach each other rapidly when eight or more
low modes are removed.
We conclude that essential confinement properties remain intact, even when the low eigen-

modes of the Dirac operator are removed in the valence sector. Restoration of chiral symmetry
is observed in that approximation.





Chapter 3

The chirally improved quark propagator and restoration
of chiral symmetry

The present chapter was motivated by the desire to understand the fact that the masses of the
mesons under Dirac low-mode truncation remained rather large as discussed in the previous
chapter. It consists of the Letter

• [2] Mario Schröck, “The chirally improved quark propagator and restoration of chiral
symmetry”, Phys. Lett. B 711 (2012) 217-224.

The mass function of the quark propagator in a gauge fixed setting exhibits the generation of a
dynamical mass caused by the dynamical breaking of the chiral symmetry. Thus, it is expected
that the dynamically generated mass vanishes under (artificial) chiral restoration. It is not
clear a priori though, which effect the truncation has on the value of the bare quark mass. The
bare quark mass is related to the absolute value of the smallest eigenvalues, hence removal of
these small eigenvalues potentially increases the bare mass. Furthermore, it is of interest at
which truncation level the chiral condensate completely vanishes. Although we found chiral
symmetry to be restored after having subtracted ∼ 16 Dirac eigenmodes, it is not understood if
the chiral condensate is equal to zero at this stage or if a combined effect of partial removal of
the chiral condensate and some effective restoration mechanism occurs.

3.0 Abstract

The chirally improved (CI) quark propagator in Landau gauge is calculated in two flavor
lattice Quantum Chromodynamics. Its wave-function renormalization function Z(p2) and
mass function M(p2) are studied. To minimize lattice artifacts, tree-level improvement of the

37
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propagator and tree-level correction of the lattice dressing functions is applied. Subsequently the
CI quark propagator under Dirac operator low-mode removal is investigated. The dynamically
generated mass in the infrared domain of the mass function is found to dissolve continuously as
a function of the reduction level and strong suppression of Z(p2) for small momenta is observed.

3.1 Introduction

The quark propagator is one of the fundamental objects in quantum chromodynamics (QCD).
The mass function of the quark propagator reveals the value of the running quark mass in the
deep ultraviolet (UV) where interactions are weak due to the asymptotic freedom of QCD. In
the infrared (IR), the dynamical generation of mass which is associated with the spontaneous
breaking of chiral symmetry is exhibited by the mass function. The IR is not accessible with
perturbative methods; lattice QCD provides a nonperturbative ab initio approach to QCD and
thus is a well adapted tool to study the IR physics of the strong nuclear force.
The quark propagator is a gauge dependent object and thus the gauge has to be fixed in

order to study its properties; we adopt the manifestly Lorentz covariant Landau gauge for
the present work. The Landau gauge quark propagator has been studied on the lattice with
various fermionic actions. Some initial investigations using (improved) Wilson fermions have
been reported in Refs. [67, 68]. A series of studies using standard Kogut–Susskind [69] and
Asqtad [70] quarks found that staggered quarks are well suited to explore the properties of the
quark propagator on the lattice [71, 72, 73, 74, 75, 76].
Lattice Dirac operators that fulfill the Ginsparg–Wilson (GW) equation allow for lattice

fermions that have an exact chiral symmetry at nonzero lattice spacing. The overlap operator
[43, 44] provides a solution to the GW equation. The quark propagator from the overlap action
has been examined in [77, 78, 79, 80, 81, 82, 83]. The drawback of overlap fermions is their
very high computational cost which renders them impractical for full dynamical simulations.

In this Letter we analyze the quark propagator from the so-called chirally improved (CI)
Dirac operator [45, 46] which fulfills the GW equation not exactly, but only approximately.
Nevertheless, the gain in simulation time of roughly one order of magnitude, in comparison to
overlap fermions, allows for an investigation of the propagator on full dynamical configurations
[59, 60]. The better chiral properties of the CI operator as opposed to Wilson’s fermion action
make it well suited to explore effects of spontaneous chiral symmetry breaking on the lattice.

Banks and Casher formulated a relation of the density of the smallest nonzero eigenvalues of
the Dirac operator to the chiral condensate [51]. In [1] we have studied the effects of removing
the lowest eigenmodes of the hermitian CI Dirac operator γ5DCI on the meson spectrum
and found signals for the restoration of chiral symmetry (the masses of the ρ and a1 became
approximately degenerate, cf. [66]) whereas confining properties persisted. The authors of [84]
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expand the Wilson loop in terms of Dirac operator eigenmodes and detect that removing the
lowest modes does not influence the static quark potential qualitatively.

A portion of this study aims at answering the question, how change the quark wave-function
renormalization function Z(p2) and the quark mass function M(p2) under Dirac low-mode
removal? It is expected that the mass function flattens out in the IR once chiral symmetry is
restored. Yet another question of interest is how the Dirac eigenmode truncation level at which
chiral symmetry was found to be approximately restored [1], compares to the loss of dynamical
mass generation in M(p2) as a function of the truncation level.
The remainder of this work is as follows: in Sec. 3.2 we briefly summarize the defining

equations of lattice Landau gauge fixing. In Sec. 3.3 we first remind the reader of the main
steps in the construction of the DCI operator, followed by a discussion of Z(p2) and M(p2)
from the DCI at tree-level and in the full interacting case. In order to reduce the dominant
lattice artifacts we apply tree-level improvement and test a multiplicative and an hybrid scheme
of tree-level correction. In Sec. 3.4 we investigate Z(p2) and M(p2) from the DCI under Dirac
low-mode removal and in Sec. 3.5 we summarize and conclude.

3.2 Gauge fixing

The continuum Landau gauge condition,

∂µAµ(x) = 0, (3.1)

can be realized on the lattice by requiring the maximization of the gauge functional

Fg[U ] = Re
∑
µ,x

tr
[
Ugµ(x) + Ugµ(x− µ̂)†

]
(3.2)

with respect to gauge transformations g(x) ∈ SU(3) where

Ugµ(x) ≡ g(x)Uµ(x)g(x+ µ̂)†. (3.3)

The sum in Eq. (3.2) runs over the four Dirac components µ and all lattice sites x. Once such
a gauge transformation is found, the discrete Landau gauge condition

∆(x) ≡
∑
µ

(Aµ(x)−Aµ(x− µ̂)) = 0 (3.4)
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holds, where Aµ(x) is recovered from the lattice gauge links Uµ(x) via

Aµ(x) ≡
[
Uµ(x)− Uµ(x)†

2iag0

]
traceless

. (3.5)

A measure for the achieved Landau gauge “quality” is given by

θ ≡ 1
V Nc

∑
x

tr
[
∆(x)∆(x)†

]
, (3.6)

here the trace goes over the color indices, Nc is the number of colors and V is the number of
lattice points. In the later discussion of the CI quark propagator we will choose θ < 10−10 as
the stopping criterion for the gauge fixing algorithm.

We accelerate the costly task of lattice gauge fixing by utilization of the graphics processing
unit (GPU) with NVIDIA® ’s CUDA™ (Compute Unified Device Architecture) programming
environment, as pointed out in the Appendix.1

For a general discussion of lattice gauge fixing and its problems we refer to [85].

3.3 The CI quark propagator

In the present section we analyze the lattice dressing functions from the CI quark propagator
after having repeated the main steps in the construction of the CI Dirac operator.

3.3.1 The CI Dirac operator

The so-called chirally improved Dirac operator DCI was introduced in [45] and first analyzed
in [46] where also its spectral properties were studied. An initial quenched hadron spectroscopy
using the DCI was examined in [86] before dynamical configurations including two light
degenerate CI quarks have been generated in order to calculate the hadron spectrum in a series
of papers [87, 59, 60, 88]. Renormalization factors of quark bilinears of the DCI were studied
in [89, 90].

The CI Dirac operator is an approximate solution to the GW equation. It is constructed by
expanding the most general Dirac operator in a basis of simple operators,

DCI (x,y) =
16∑
i=1

c(i)
xy(U)Γi +m01, (3.7)

1 Not included in this thesis since its content became supersede by the later work [4] (Chap. 5).
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where the sum runs over all elements Γi of the Clifford algebra. The coefficients c(i)
xy(U) consist

of path ordered products of the link variables U connecting lattice sites x and y. Inserting this
expansion into the GW equation then turns into a system of coupled quadratic equations for
the expansion coefficients of the DCI . That expansion provides for a natural cutoff which turns
the quadratic equations into a simple finite system.
The ansatz is constructed such that all symmetries of the fermionic action are maintained

and moreover γ5-hermiticity is imposed. The so-called clover term [91] is included for O(a)
improvement where the csw parameter is set to its tree-level value (one).

3.3.2 Configurations

For the analysis of the CI quark propagator we use 125 gauge field configurations [59, 60] of
lattice size 163 × 32 and lattice spacing a = 0.144(1) fm. The configurations include two light
degenerate dynamical CI quark flavors with the mass parameter set to m0 = −0.077 and a
resulting bare AWI-mass of m = 15.3(3) MeV. For the simulation of the gauge fields as well
as for our valence quarks, paths up to length four are used in the ansatz Eq. (3.7) and the
corresponding coefficients can be found in [59].

3.3.3 Nonperturbative quark propagator

The continuum quark propagator at tree-level reads

S(0)(p) = (ip/+m)−1 (3.8)

where m is the bare quark mass. In a manifestly covariant gauge like Landau gauge, the
interacting renormalized quark propagator S(µ; p) can be decomposed into Dirac scalar and
vector parts

S(µ; p) =
(
ip/A(µ; p2) +B(µ; p2)

)−1
(3.9)

or equivalently as
S(µ; p) = Z(µ; p2)

(
ip/+M(p2)

)−1
. (3.10)

In the last equation we introduced the wave-function renormalization function Z(µ; p2) =
1/A(µ; p2) and the mass function M(p2) = B(µ; p2)/A(µ; p2).

On the lattice, the regularized quark propagator is calculated and consequently it depends
on the cutoff a. The regularized quark propagator SL(p; a) can then be renormalized at the
renormalization point µ with the momentum independent quark wave-function renormalization
constant Z2(µ; a),

SL(p; a) = Z2(µ; a)S(µ; p). (3.11)
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Whereas the mass function M(p2) is independent of the renormalization point µ (and
equivalently of the cutoff scale a), the wave-function renormalization function Z(µ; p2) differs
at different scales but can be related from different scales by multiplication with a constant,
i.e., by the ratio of the two different quark renormalization constants.
The momentum subtraction scheme (MOM) has the renormalization point boundary con-

ditions Z(µ;µ2) = 1 and M(µ2) = m(µ) where m(µ) becomes the running mass at large
momenta.

Below we extract the nonperturbative functions M(p2) and Z(p2) ≡ Z2(µ; a)Z(µ; p2) directly
from a lattice calculation as it was discussed in great detail in, e.g., Ref. [92]. We perform a
cylinder-cut [67] on all our data and average over the discrete rotational and parity symmetries
of SL(p; a) to increase the statistics.

3.3.4 The lattice quark propagator at tree-level

For the sake of easier notation we will suppress the a dependence of the lattice quark propagator
and write ZL(p) and ML(p) as functions of p rather than p2 in the following discussion.

The lattice quark propagator at tree-level S(0)
L (p) differs from the continuum case, Eq. (3.8),

due to discretization artifacts,

S
(0)
L (p) =

(
iak/+ aM

(0)
L (p)

)−1
. (3.12)

The dressing function A(0)
L (p) is by construction equal to one at tree-level (at least without

tree-level improvement) and thus the function B(0)
L (p) equals at tree-level the mass function

M
(0)
L (p).
We extract the CI lattice momentum ak(p) from the tree-level propagator on the lattice and

depict it in Fig. 3.1. The result is consistent with the analytically derived expression for the
DCI momenta given in Appendix A.1.
The tree-level mass function aM (0)

L (p) which in the continuum equals the bare mass m, is
shown in Fig. 3.2 (red crosses), again together with the corresponding analytical expression.
We find that aM (0)

L (p) has a zero-crossing and aM (0)
L (0) ≈ −0.333. The latter value is trivially

equal to the sum of all coefficients of Eq. (3.7) that come with a unit matrix in Dirac space

∑
i

si +m0 (3.13)

whereby the bare mass parameter is m0 = −0.077 and the nonzero si are listed in Appendix
A.1.
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Figure 3.1: CI lattice momentum ak(p) extracted from the tree-level propagator (crosses) com-
pared with the analytical expression (full line) given in Appendix A.1.

3.3.5 The interacting propagator

We expect the interacting propagator to have a similar form to the continuum case Eq. (3.10),
hence we write

SL(p) = ZL(p) (iak/+ aML(p))−1 . (3.14)

The functions aML(p) and ZL(p) extracted from the lattice Monte Carlo simulation are shown
in Fig. 3.2 and Fig. 3.3 (blue triangles), respectively. The shape of aML(p) is similar to aM (0)

L (p)
and also ZL(p) strongly deviates from the expected monotonically growing behavior, thus is
clearly altered by discretization errors.
To get a handle on the lattice artifacts, i.e., to retain the shapes of the wave-function

renormalization function and the mass function familiar from earlier lattice works as well as
from Dyson-Schwinger equation studies [93], we discuss improvement and tree-level correction
in the forthcoming subsections.

3.3.6 Improvement

The Symanzik improvement program [23] offers a systematic way to reduce the errors of the
fermionic action to O(a2). All terms that have the correct dimensionality and the symmetries
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Figure 3.2: The lattice quark propagator mass function at tree-level (red crosses and full line)
and in the unimproved full interacting case (blue triangles) without tree-level correction. The
tree-level results comprise a lattice extraction from the tree-level DCI (red crosses) and a plot of
the analytical expression of the mass function (red line) given in Appendix A.1.

of the QCD fermionic Lagrangian must be included into the action:

L1(x) = ψσµνFµνψ, (3.15)

L2(x) = ψ
−→
Dµ
−→
Dµψ + ψ

←−
Dµ
←−
Dµψ, (3.16)

L3(x) = m tr [FµνFµν ] , (3.17)

L4(x) = m
(
ψγµ
−→
Dµψ − ψγµ

←−
Dµψ

)
, (3.18)

L5(x) = m2ψψ. (3.19)

The terms L3 and L5 can be accounted for by a redefinition of the bare parameters m and g.
L2 and L4 are only needed for off-shell quantities like hadronic matrix elements or the quark
propagator [94]. Thus for on-shell quantities it is sufficient to take the clover term [95] (which
corresponds to L1) into account.
Note that whereas exact GW fermions are automatically O(a) improved, the CI operator

fulfills the GW equation only approximately and thus the clover term is included in the CI
action.

Since the quark propagator is an off-shell quantity we would like to include the terms L2 and
L4 as well. In [96] it is shown that at tree-level L2 and L4 can be eliminated by a transformation



3.3 The CI quark propagator 45

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4

Z
L
(p

2 )

p [GeV]

plain
improved

Figure 3.3: The wave-function renormalization function ZL(p) of the CI quark propagator:
unimproved and without tree-level correction (blue triangles) and with tree-level improvement
and tree-level correction (red circles). The renormalization point is set at µ = 2 GeV.

of the fermion fields according to

ψ →
(

1 + a

4m
)(

1− a

4γµ
−→
Dµ

)
ψ, (3.20)

ψ →
(

1 + a

4m
)
ψ

(
1 + a

4γµ
←−
Dµ

)
. (3.21)

Improvement beyond tree-level requires tuning of the coefficients of the fermion field transfor-
mations [97] which we do not attempt. Hence we adopt the above fermion field transformations
under which the quark propagator turns into [67, 68]

SI(x,y) ≡
〈

(1 + am)S(x,y;U)− a

2δ(x,y)
〉

(3.22)

where the index I denotes improvement. In Eq. (3.22), S(x,y;U) is obtained by inverting the
DCI operator on each configuration and the brackets denote Monte Carlo integration over the
gauge fields U .
All results that follow have been tree-level improved according to the above prescription.

3.3.7 Tree-level correction

In order to blank out the lattice artifacts which are already present at tree-level, we now focus
on the derivation of the interacting propagator from its tree-level form.
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For the renormalization function ZL(p) we adopt a multiplicative tree-level correction

ZL(p)→ ZL(p)
Z

(0)
L (p)

. (3.23)

As can be seen in Fig. 3.3 (red circles), this procedure together with the tree-level improvement
from the previous subsection flattens ZL(p), hence reduces the dominant lattice artifacts.
However, the fact that the function is still not monotonically growing indicates that the
improvement coefficients are not sufficiently adjusted to remove all O(a) errors when simply
picking their tree-level values.
In order to apply a multiplicative tree-level correction to the mass function of the form

aML(p)→ amML(p)
M

(0)
L (p)

(3.24)

we have to carry out an additive mass renormalization of the tree-level function B(0)
L (p) in order

to avoid divergences, i.e.,
aB

(0)
L (p)→ aB

(0)
L (p) + amadd (3.25)

where amadd is chosen such that B(0)
L (0) = m, like in the continuum, thus

amadd = am− aB(0)
L (0) ≈ 0.344. (3.26)

As a result, the multiplicative tree-level correction for the mass function is

aML(p)→ amML(p)A(0)
L (p)

B
(0)
L (p) +madd

. (3.27)

Alternatively, we may adopt an hybrid tree-level correction which is based on the ideas
developed in Ref. [68]: if p < p′, then perform an additive tree-level correction

aML(p)→ aML(p)− aB
(0)
L (p) + amadd

A
(0)
L (p)

(3.28)

and for momenta larger than p′ apply a multiplicative tree-level correction

aML(p)→ amML(p)A(0)
L (p)

B
(0)
L (p)

. (3.29)

The momentum parameter p′ should be adjusted thereby such that ML(p) is continuous and
smooth at p = p′ which we found to be the case for p′ = 1.5 GeV.
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Both possibilities of tree-level correction for the mass function ML(p) are plotted in Fig. 3.4.
We observe that the pure multiplicative correction (blue crosses) results in an infrared enhanced
function, enhancement occurring from 1.25GeV on downwards and appearing to be rather
steep. The hybrid scheme (red circles), on the other hand, exhibits a wider range of IR mass
generation (from 2.5GeV on downwards), gives a higher IR mass and yields flattening of the
mass function in the deep IR. The hybrid scheme allows for an earlier mass generation due to
the fact that the multiplicative correction therein (for p ≥ p′) does not require an additive mass
renormalization since the zero-crossing of the tree-level function is handled by the additive
tree-level correction (p < p′).

When comparing these results with lattice quark propagator studies from a different fermionic
action, for example to the (quenched) overlap quark propagator [77, 78, 79, 80, 81, 82, 83], we
find better agreement for the hybrid scheme. It has to be stressed however that the parameter
p′ introduces a small arbitrariness to the procedure whereas the simpler pure multiplicative
scheme provides a straightforward comparison of the interacting mass function with its tree-level
counterpart while still yielding qualitatively the correct physics. Consequently, for the next
section we adopt the simpler multiplicative scheme for the analysis of the effects of Dirac
low-mode removal on the quark propagator mass function in order to avoid possible systematic
errors related to the tuning of p′.
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Figure 3.4: The CI quark propagator mass function ML(p) after improvement and application
of a pure multiplicative (blue crosses) and an hybrid (red circles) tree-level correction procedure.
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3.4 Restoration of chiral symmetry

The lowest Dirac eigenmodes are known to play a crucial role for dynamical chiral symmetry
breaking as stated by the Banks–Casher relation [51]. The latter relates the chiral condensate
to the density of the smallest nonzero Dirac eigenmodes. As a consequence, when removing the
Dirac eigenmodes near the origin from the theory, the chiral condensate vanishes and chiral
symmetry becomes “artificially restored” [1].
The aim of the current work is to analyze the effects of artificial chiral restoration on the

dressing functions of the quark propagator. Consider the hermitian Dirac operator D5 ≡ γ5D

which is normal and thus has real eigenvalues µi. D can be written in terms of the spectral
representation of D5,

D =
N∑
i=1

µi γ5 |vi〉 〈vi| . (3.30)

We split the quark propagator S = D−1 into a low-mode part (lm) and a reduced part (red),
e.g., using the eigenvalues and eigenvectors of D5,

S =
∑
i≤k

µ−1
i |vi〉 〈vi| γ5 +

∑
i>k

µ−1
i |vi〉 〈vi| γ5 (3.31)

≡ Slm(k) + Sred(k). (3.32)

Hence we can obtain the reduced part of the propagator by subtracting the low-mode part from
the full propagator

Sred(k) = S − Slm(k). (3.33)

We calculate the quark wave-function renormalization function ZL(p) and the quark mass
function ML(p) from the reduced propagators of Eq. (3.33) with varying reduction levels
k = 2 − 512. We tree-level improve the modified propagators and apply the multiplicative
tree-level correction scheme, cf. Sec. 3.3. The dressing functions from reduced propagators are
presented in Fig. 3.5 and Fig. 3.6.

Figure 3.5 reveals amplification of IR suppression of ZL(p) when subtracting Dirac low-modes
whereas the range from medium to high momenta is not altered at all. The mass functionML(p),
Fig. 3.6, demonstrates a similar behavior: it gets suppressed in the IR when removing more
and more eigenmodes until the dynamic generation of mass completely ceases at truncation
stage k ≈ 128.

In Fig. 3.7 we compare the deep IR mass of the CI quark propagator from ML(p2
min), at the

smallest available momentum pmin = 0.1345 GeV, as a function of the reduction level with the
mass splitting of the vector meson ρ and its chiral partner the axial vector current a1, taken
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Figure 3.5: The quark wave-function renormalization function ZL(p) under Dirac eigenmode
removal for different reduction levels k. The renormalization point is set at µ = 4 GeV.

from Ref. [1]. Note that the reduction level k can be translated to an energy scale which is
given in the lower abscissa of the figure and was derived in [1] by integrating the histograms of
the eigenvalues.
The mass splitting between the ρ and the a1 rapidly drops down and reaches a plateau

after subtracting about 16 eigenmodes; it does not go down to zero which can most likely be
attributed to the small explicit chiral symmetry breaking by the nonvanishing quark mass. In
contrast, the dynamically generated mass of the quark propagator, ML(p2

min), decreases slower
and reaches its plateau only after subtracting more than 128 Dirac eigenmodes.
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Figure 3.6: The quark mass function ML(p) under Dirac eigenmode removal for different reduc-
tion levels k.
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Figure 3.7: The infrared mass ML(p2
min) of the reduced CI quark propagator as a function of

the reduction level compared with the mass splitting between the ρ and the a1 from Ref. [1].
The upper abscissa shows the truncation level k and the lower abscissa gives the corresponding
energy scale, the relation between the two is obtained by integrating the histograms of the D5
eigenvalues.
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3.5 Conclusions

The wave-function renormalization function Z(p2) and the mass function M(p2) from the CI
quark propagator have been analyzed on configurations with two light degenerate CI quark
flavors. It has been demonstrated that the combination of tree-level improvement and a
multiplicative or hybrid tree-level correction scheme drastically reduce the dominant lattice
artifacts.
Removing the lowest Dirac eigenmodes out of the quark propagator strongly suppresses the

wave-function renormalization function in the IR and completely dissolves the dynamically
generated mass displayed by M(p2). Under Dirac low-mode removal, the mass function is found
to reveal a smoother transition towards chiral restoration than the splitting of the vector and
axial vector currents.





Chapter 4

Symmetries of hadrons after unbreaking the chiral
symmetry

In Chap. 2 only ground states of the scalar, pseudoscalar, vector and axial vector mesons under
Dirac low-mode removal have been studied. In this chapter, which includes the publication

• [3] L. Ya. Glozman, C. B. Lang, M. Schröck, “Symmetries of hadrons after unbreaking
the chiral symmetry”, Phys. Rev. D 86 (2012) 014507,

we extend the investigation in the following way: first, the variational analysis method (Sec. 1.1.4)
is adopted in order to enable us to obtain the evolution of correlator functions and effective
masses of the tensor meson b1 and some excited states of the previously studied mesons. Second,
we include baryons in our analysis, in particular the nucleon and ∆ of positive and negative
parity, respectively.

4.0 Abstract

We study hadron correlators upon artificial restoration of the spontaneously broken chiral
symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the
Dirac operator from the valence quark propagators and study evolution of the hadron masses
obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral
symmetry and their exponential decay signals become essentially better. From the analysis
of the observed spectroscopic patterns we conclude that confinement still persists while the
chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)A
symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals
of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison
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of the ∆−N splitting before and after unbreaking of the chiral symmetry we conclude that
both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.

4.1 Introduction

Highly excited hadrons in the u, d sector reveal some parity doubling [98, 99, 100, 57, 58, 66, 101,
102, 103, 104] and possibly some higher symmetry. It was conjectured that this parity doubling
reflects effective restoration of chiral symmetry, i.e., insensitivity of the hadron mass generation
mechanism to the effects of chiral symmetry breaking in the vacuum [98, 99, 100, 57, 58, 66].
Whether this conjecture is correct or not can be answered experimentally since the conjectured
symmetry requires existence of some not yet observed states.
Recent and most complete experimental analysis on highly excited nucleons that includes

not only elastic πN , but also the photoproduction data, does report evidence for some of the
missing states and the parity doubling patterns look now even better than before [105].
The question of a possible symmetry in hadron spectra is one of the central questions for

QCD since it would help to understand dynamics of confinement and chiral symmetry breaking
as well as their role for the hadron mass generation.

Another “experimental” tool to address the issue of the hadron mass generation is lattice QCD.
Equipped with the QCD Lagrangian and Monte Carlo techniques, one can calculate, at least in
principle, hadron masses and other hadron properties from first principles. Enormous progress
has been achieved for the hadron ground states. The problem of excited states, especially above
the multihadron thresholds like πN , ∆π, ππ, πρ, . . . turns out to be much more difficult and
demanding than was initially anticipated. When it is solved lattice results should reproduce
experimental patterns and possibly indicate some still missing states.
Still, the mass of a hadron by itself, obtained from the experiment or from the lattice

simulations, tells us not so much about the physics which is behind the mass generation. The
pattern of all hadrons, on the contrary, could shed some light on the underlying dynamics if
there are some obvious symmetries in the pattern or if its regularities can be systematically
explained.
The most interesting issue is to get some insight on how QCD “works” in some important

cases and understand the underlying physical picture. In this sense one can use lattice QCD
as a tool to explore the interrelations between confinement and chiral symmetry breaking. In
particular, we can ask the question whether hadrons and confinement will survive after having
artificially removed the quark condensate of the vacuum. This can be achieved via removal of
the low lying eigenmodes of the Dirac operator, which is a well defined procedure [16, 19].
In the past mainly the opposite was explored. After suggestions within the instanton liquid

model [53] the effect of the low lying chiral modes on the ρ and other correlators was studied
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on the lattice. In a series of papers [14, 106, 15, 16] it was shown that low-modes saturate
the pseudoscalar and axial vector correlators at large distances and do not affect the part
where high-lying states appear. In [16, 17] low-mode saturation and also effects of low-mode
removal for mesons were studied for quenched configurations with the overlap Dirac operator
[43, 44]. Subsequently low-modes were utilized to improve the convergence of the determination
of hadron propagators [16, 17, 18, 54, 55, 56] studying the efficiency when using the low-modes
of the Dirac operator or the hermitian Dirac operator.
We are studying the complementary case, i.e., removal of the low-modes and we will refer

to this as “unbreaking” the chiral symmetry. This issue has been addressed in a recent paper
[1, 5] where the low lying eigenmodes of the Dirac operator have been removed from the quark
Green’s function and masses of the lowest mesons π,ρ,a0 and a1 have been calculated with such
truncated quark propagators. The truncated Landau gauge quark propagator itself has been
investigated in [2] where the loss of dynamical mass generation in the infrared sector of the
propagator has been demonstrated.
After the unbreaking of the chiral symmetry the signal from the π-meson, obtained with

the pseudoscalar quark-antiquark operator, disappears, which is consistent with the (pseudo)
Goldstone boson nature of the pion. Indeed, with the artificially restored chiral symmetry there
cannot be Goldstone bosons. What is very interesting, is that other low lying mesons survive
and the quality of their signals become even essentially better after extraction of the low lying
eigenmodes of the Dirac operator, responsible for chiral symmetry breaking. The very fact that
hadrons survive the unbreaking of the chiral symmetry tells that there is confinement in the
system even without the quark condensate. (A similar behavior was found in [84, 107], where
the effect of such a removal on the static quark potential was studied.)
After extraction of the quark condensate the lowest-lying ρ and a1 mesons demonstrate

restoration of the chiral symmetry - they become degenerate - and their mass is rather large. This
disproves a rather popular assertion that, e.g., the ρ-mass is entirely due to the quark condensate
of the vacuum. As a physical implication we should then not expect a drop off the ρ-mass in a
dense medium, which is a very popular issue both theoretically and experimentally for the last
two decades [108]. This result should also be of importance for a debated issue of confining but
chirally symmetric matter at low temperatures and large density [109, 110, 111, 112].

The conclusion of [1] about survival of confinement after unbreaking of the chiral symmetry
was obtained on the limited basis of the lowest-lying mesons. In order to see it more clearly we
need to extend the number of extracted states, in particular to include radially and orbitally
excited hadrons (following quark model terminology). Consequently, we now add the b1 and ρ′

states to the above mentioned list of mesons. We limit ourselves only to the isovector mesons
since the isoscalar mesons would require inclusion of disconnected graphs, which is numerically
very costly.
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Most importantly, we study behavior of the ground and excited positive and negative parity
states in the N and ∆ spectra. The baryonic states add additional information about existence
or nonexistence of confinement. They do allow to see that confinement does survive after the
restoration of chiral symmetry. Second, we see some traces of the higher symmetry, higher than
simply SU(2)R × SU(2)L. This observation may be related with the higher symmetry seen in
the highly excited hadrons.

Our paper is organized as follows. In the next section we remind on the connection between
low eigenmodes of the Dirac operator and the quark condensate in the vacuum. We discuss
some basic aspects of removal of Dirac eigenmodes from the quark propagator. In Sect. 4.3 we
present the details of the lattice simulation. The fourth section is devoted to the description of
the baryon and meson interpolators used for our study of hadrons. In Sect. 4.5 we show and
analyze the results and draw conclusions. Finally, in the last section, we briefly summarize our
main observations.

4.2 The quark condensate and the Dirac operator

The lowest eigenmodes of the Dirac operator are related (in the chiral limit) to the quark
condensate of the vacuum. This is encoded in the Banks–Casher relation [51]

< 0|qq|0 >= −πρ(0) , (4.1)

where ρ(0) is a density of the lowest quasi-zero eigenmodes of the Dirac operator. Here the
sequence of limits is important: first, the infinite volume limit at finite quark mass is assumed
and then the chiral limit should be taken. The opposite sequence would produce no chiral
condensate as in the finite volume there cannot be any spontaneous breaking of chiral symmetry.
All lattice calculations are performed on a lattice of a finite volume. In the finite lattice

volume the spectrum of the Dirac operator is discrete and the energy of the lowest nonzero
mode of the Dirac operator is finite. Consequently, the quark condensate is strictly speaking
zero. However, increasing the lattice volume the gap in the spectrum of the eigenmodes becomes
smaller and smaller and the density of the lowest nonzero eigenmodes increases. A well defined
limit of this density scaling exists: the number of such eigenvalues in a given interval adjacent to
the real axis scales with the lattice volume. (In [113] is is argued1 that the number of relevant
eigenvalues should scale proportional the square root of the number of lattice points.)

In [56, 1] it was established that the eigenmodes of the hermitian Dirac operator D5 ≡ γ5D

result in a faster saturation of the pseudoscalar correlator when approximating quark propagators

1 We thank Kim Splittorff for pointing us to that reference
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by the lowest eigenmodes only, compared with the eigenmodes of the Dirac operator D.
Therefore, we focus on reducing the quark propagators in terms of eigenmodes of D5 rather
than D.
From the lattice calculations in a given finite volume we cannot say a priori which and how

many lowest eigenmodes of the Dirac operator are responsible for the quark condensate of the
vacuum. For the overlap operator the real eigenvalues correspond to exact chiral modes, the
zero modes (instantons); for Wilson-type operators one may associate real eigenvalues with
zero modes. Their weight is suppressed in the infinite volume limit. The Banks-Casher relation,
however, relies only on the density of nonzero modes. For the hermitian Dirac operator D5

there is no simple method to distinguish between the real modes of the D and its small, but
complex modes. In [1, 5] we discuss the integral over the distribution of the (real) eigenvalues
of D5. There we observe a transition region up to roughly twice the size of the quark mass
corresponding to O(16− 32) eigenmodes, as also observed in, e.g., [62, 63, 64, 65].
We follow the procedure to remove an increasing number of the lowest Dirac modes and

study the effects of the (remaining) chiral symmetry breaking on the masses of hadrons. To be
specific, we construct reduced quark propagators

Sred5(k) = S − Slm5(k) ≡ S −
∑
i≤k

µ−1
i |vi〉〈vi|γ5 , (4.2)

where S is the standard quark propagator obtained from the inversion of the Dirac operator,
the µi are the (real) eigenvalues of D5, |vi〉 are the corresponding eigenvectors and k represents
the reduction parameter which will be varied from 0− 128.

Note that the low-mode contribution (lm) of the quark propagators, Slm5(k), must act on the
same quark sources as S, see discussion below.

4.3 The setup

4.3.1 Dirac operator

For the dynamical quarks of our configurations as well as for the valence quarks of our study
the so called chirally improved (CI) Dirac operator [45, 46] has been used. The latter represents
an approximate solution to the Ginsparg–Wilson equation and therefore offers better chiral
properties than the Wilson Dirac operator while being less expensive, in terms of computation
time, in comparison to the chirally exact overlap operator.



58 Chapter 4 Symmetries of hadrons after unbreaking the chiral symmetry

4.3.2 Gauge configurations

We performed our study on 161 gauge field configurations [59, 60] that were generated for two
degenerate dynamical light CI fermions with a corresponding pion mass mπ = 322(5) MeV. The
lattice size is 163 × 32 and the lattice spacing a = 0.144(1) fm.

4.3.3 Quark source smearing

In order to obtain quark propagators, the Dirac operator has to be inverted on given quark
sources. To improve the signal in hadron correlators, extended sources of Gaussian form [31, 32]
instead of point sources are being used. Using several different extended sources allows for a
larger operator basis in the variational method [34, 33, 114]. We use three different kinds of
sources: narrow (0.27 fm) and wide (0.55 fm) sources, which are approximately of Gaussian
shape, and a derivative source.
The narrow (wide) sources will be denoted by a subscript n (w) of the quark fields and the

derivative source by ∂i, respectively. The details of the calculation of the smeared quark sources
are given in [60].

4.3.4 Variational method

In order to disentangle the excited states from the ground state (and also to provide cleaner
signals for the ground states) we use the variational method [34, 33]. One computes cross-
correlators Cik(t) = 〈Oi(t)Ok(0)†〉 between several different lattice interpolators and solves the
generalized eigenvalue problem

C(t)un(t) = λn(t)C(t0)un(t) , (4.3)

in order to approximately recover the energy eigenstates |n〉. The eigenvalues allow us to get
the energy values λn(t) ∼ exp(−En t) and the eigenvectors serve as fingerprints of the states,
indicating their content in terms of the lattice interpolators. In our plots we show λn(t), the
effective masses En(t) = log(λn(t)/λn(t+ 1)) and the t- dependence of the eigenvectors in order
to verify the state identification. The quality of the results depends on the statistics and the
provided set of lattice operators (for a discussion see [60]). The used interpolators are discussed
in Sect. 4.4.

4.3.5 Dirac eigenmodes

On the given gauge field configurations we calculated the lowest 128 eigenmodes of the hermitian
Dirac operatorD5 using ARPACK which is an implementation of the Arnoldi method to calculate
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a part of the spectrum of arbitrary matrices [61].
Once the eigenmodes have been calculated and the quark propagators S have been obtained

by inverting the Dirac operator on the three types of sources mentioned in Sec. 4.3.3, we can
construct the reduced propagators Sred5(k) according to (4.2) after multiplying the low-mode
part of the propagator, Slm5(k), with the same three source types, respectively.

4.4 Hadron interpolators

Here we list the baryons and mesons we studied under Dirac low-mode reduction and give the
interpolating fields for each individual.

4.4.1 Baryons

We analyze the nucleon and ∆ baryons both with positive and negative parity. For the
interpolators we use Gaussian smeared quark sources (n and w). For the nucleon we adopt
three different Dirac structures, resulting in 18 interpolators (see Tab. 4.1) where we left out
those operators that are similar to other ones due to isospin symmetry. The construction of the
nucleon interpolators is given by

N (i) = εabc Γ
(i)
1 ua

(
uTb Γ

(i)
2 dc − dTb Γ

(i)
2 uc

)
. (4.4)

For the ∆,
∆k = εabc ua

(
uTb C γk uc

)
, (4.5)

we use only one Dirac structure and the six corresponding interpolators are listed in Tab. 4.2.
We use parity projection for all baryons and Rarita-Schwinger projection for the ∆ [60]. The
sink interpolators are also projected to zero spatial momentum.

4.4.2 Mesons

We investigate isovector mesons of spin 1. Isoscalars require the calculation of disconnected
graphs which are computationally too demanding for the type of fermion action used. The
scalar meson a0 as well as the pseudoscalar pion was studied already in [1].

Thus, the studied nonexotic channels are the JPC combinations 1−− (ρ), 1++ (a1) and 1+−

(b1). For the analysis of the mesons we include derivative sources [115] in the construction of
the interpolators to provide a large operator basis for the variational method. In Table 4.3 we
list only those interpolators explicitly whose combination resulted in a good signal in practice
when plugged into the variational method. The sink interpolators are projected to zero spatial
momentum. A more complete list of possible interpolating fields is given in [60, 88].
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χ(i) Γ
(i)
1 Γ

(i)
2 smearing #N

χ(1) 1 C γ5 (nn)n 1
(nn)w 2
(nw)n 3
(nw)w 4
(ww)n 5
(ww)w 6

χ(2) γ5 C (nn)n 7
(nn)w 8
(nw)n 9
(nw)w 10
(ww)n 11
(ww)w 12

χ(3) i1 C γt γ5 (nn)n 13
(nn)w 14
(nw)n 15
(nw)w 16
(ww)n 17
(ww)w 18

Table 4.1: Interpolators for the N channel. The Dirac structures χ(i), the quark smearings and
the corresponding interpolator numbers #N are given.

smearing #∆

(nn)n 1
(nn)w 2
(nw)n 3
(nw)w 4
(ww)n 5
(ww)w 6

Table 4.2: Interpolators for the ∆ channel. The quark smearings and the corresponding interpo-
lator numbers #∆ are given.
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#ρ interpolator(s)
1 anγkbn
8 awγkγtbw
12 a∂kbw − awb∂k
17 a∂iγkb∂i
22 a∂kεijkγjγ5bw − awεijkγjγ5b∂k
#a1 interpolator(s)
1 anγkγ5bn
2 anγkγ5bw + awγkγ5bn
4 awγkγ5bw

#b1 interpolator(s)
6 a∂kγ5bn − anγ5b∂k
8 a∂kγ5bw − awγ5b∂k

Table 4.3: Interpolators for (top) the ρ-meson, JPC = 1−−, (middle) the a1-meson, JPC = 1++,
and (bottom) the b1-meson, JPC = 1+−. The first column shows the number, the second shows
the explicit form of the interpolator. The numbers refer to the classification in [88].
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Figure 4.1: ρ with 12 eigenmodes subtracted: The correlators for all eigenstates (upper left),
effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.2: ρ with 32 eigenmodes subtracted: The correlators for all eigenstates (upper left),
effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.3: a1 with 4 (upper row) and 64 (lower row) eigenmodes subtracted: The correlators
for all eigenstates (left), effective mass plot for the lowest state (right).
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Figure 4.4: b1 with 2 (upper row) and 128 (lower row) eigenmodes subtracted: The correlators
for all eigenstates (left), effective mass plot for the lowest state (right).
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4.5 Results and Discussion

4.5.1 Truncation study

The reduction parameter k in (4.2) gives the number of the lowest eigenmodes of the Dirac
operator removed from the quark propagator. We study reduced quark propagators with
k = 0, 2, 4, 8, 12, 16, 20, 32, 64, 128 and three different quark smearings (n, w, ∂i). These are
then combined into different hadron propagators and the correlation matrix for a hadron with
given quantum numbers is calculated. The variational method is used to extract the ground
and excited states of that hadron. Consequently, we observe and study the evolution of hadron
masses as a function of the number of the subtracted lowest eigenmodes. Increasing the number
of the subtracted lowest eigenmodes we gradually remove the chiral condensate of the vacuum
and consequently “unbreak” the chiral symmetry.
Typical results for the mesons and baryons under study are shown in Figs. 4.1 - 4.12. For

each hadron we show in the figures two representative reduction levels k for which we also
show explicitly all eigenvalues stemming from the variational method, i.e., the correlators
corresponding to different energy levels. Moreover, we show for the ground and first excited
state (where applicable) the eigenvector components and the effective mass plots including fit
ranges and values. The energy values are determined from exponential fits to the eigenvalues
over the indicated fit ranges.
In Figs. 4.1 and 4.2 we show the eigenvalues and eigenvectors (cf. Sect. 4.3.4) and the

effective mass plots for the ground and excited states of the ρ-meson (JPC = 1−−) after having
subtracted 12 and 32 eigenmodes of D5. (The results for the untruncated situation, with higher
statistics and for several more parameter sets are shown in [88].) The eigenvector composition
for both states is stable and clearly distinct. The mass splitting between ground state and
excited state disappears with increasing truncation level.

For the meson channels a1 and b1 the statistics allow only to determine the ground state in a
reliable way. In the case of the a1 (JPC = 1++) meson (Fig. 4.3 for k = 4 and k = 64) and
for the b1 (JPC = 1+−) meson (Fig. 4.4 for k = 2 and k = 128) we thus show only the ground
states. We observe improved plateau quality for the effective masses when increasing number of
truncated modes.

In Fig. 4.5 the nucleon of positive parity (the ground state and its first excitation, JP = 1
2

+),
after having subtracted the lowest 20 eigenmodes is shown. These should be compared with
Fig. 4.6 where 64 modes have been subtracted. In Fig. 4.7 and 4.8 we present two nucleon
states of negative parity, JP = 1

2
−, (at reduction level 12 and 64).

The positive parity ∆ ground and excited states, JP = 3
2

+ at reduction level 16 and 128 are
shown in Fig. 4.9 and Fig. 4.10 and the negative parity ∆’s (JP = 3

2
−) at the same reduction
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levels are given in Fig. 4.11 and Fig. 4.12, respectively.
An obvious observation is that the quality of the signal (the quality of plateaus) essentially

improves with increasing the number of removed eigenmodes for all hadrons under study. This
fact makes it easier to reliably identify masses of states after unbreaking the chiral symmetry. In
many cases for excited hadrons the quality of plateaus before unbreaking of the chiral symmetry
is rather poor, but after removing more and more eigenmodes of the Dirac operator it becomes
better and better, so eventually it allows to unambiguously establish that indeed we see the
state, even though with the untruncated propagators the identification of the state would be
less clear.

A plausible explanation for this phenomenon would be that by unbreaking the chiral symmetry
we remove from the hadron its pion cloud and subtract all higher Fock components like πN ,
π∆, ππ, and so on from the hadron wave functions. It is these components related to the
chiral symmetry breaking that couple excited and not excited hadrons to each other and render
signals from the excited states poor in fully untruncated QCD.

4.5.2 Confinement after unbreaking the chiral symmetry

The most interesting question is whether hadrons and confinement survive the unbreaking of the
chiral symmetry. To discuss this issue we put all the results from the previous figures together
and analyze how masses of the considered hadrons change with the reduction level. Therefore,
the relevant truncation scale is not the Dirac operator eigenmode index k itself, since it has to
scale with the lattice volume when keeping the physics constant. Instead, we introduce a cutoff
parameter σ such that the reduction level σ means that all µk for which |µk| < σ have been
excluded in the underlying quark propagators [1]. We still give the corresponding index k on
the upper horizontal scale of the plots.

The masses of all studied hadrons under D5 eigenmode reduction are summarized in Fig. 4.13.
The scale is set by the Sommer parameter (i.e., by the static potential acting between two heavy
quarks, in other words, by the gluonic dynamics). The physics of the static potential knows
nothing about the valence quarks and the truncation of lowest lying eigenmodes of the Dirac
operator for the light valence quarks. It implies that these plots suggest at least qualitatively
the evolution of the hadron masses in absolute units of energy. We observe approximately a
universal growth of all hadron masses with equal slope after subtraction of a sufficient amount
of the chiral modes of the Dirac operator. In this regime chiral symmetry is approximately
restored and the whole hadron mass is not related to chiral symmetry breaking. A universal
slope might be interpreted as an indication to a universal growth of the hadron size.
Assume that after having unbroken the chiral symmetry the exponential decay signals from

all hadrons would disappear. This would indicate that with the artificial restoration of the
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chiral symmetry confinement also vanishes and that there is a direct connection between the
confinement in QCD and the lowest lying modes of the Dirac operator. Contrary to that we
observe a very clear signal from all hadrons, except for a pion. This suggests that confinement
survives the unbreaking of the chiral symmetry.
However, there is still the possibility that this clear signal comes from the unconfined

(unbound) quarks with some mass m0 at a given truncation level. In this case we would expect
at a given truncation level a universal scaling law with all mesons having the mass 2m0 and all
baryons with the mass 3m0. There would be no excited states of hadrons.

In order to address this issue we show in Fig. 4.14 all hadron masses in units of the ρ-meson
mass obtained at the same truncation level. Indeed, some of the states – such as a1 and ρ′, as
well as the ground and the first excited states of the nucleon of both parities – do follow this
behavior of mass 2m0 and 3m0 for mesons and baryons, respectively. However, this is definitely
not the case for the b1 state as well as for the ∆-resonance and especially its first excited states
of positive and negative parity. Given that the signal in all latter cases is unambiguous, we
conclude that there is no universal scaling (2m0 for mesons and 3m0 for baryons) for all hadrons.
This rules out the possibility that our signals are produced by the unbound (unconfined) quarks.
We do observe confined hadrons.

Actually, this can be seen also from another perspective. The mass m0 is large and increases
with truncation of the quark propagators. At the same time we observe chiral restoration in
the correlators (e.g., a1 and ρ). The large mass m0 of unconfined free quarks then contradicts
restoration of chiral symmetry. This supports our argument that we do not observe unconfined
quarks.

The fact that masses of some of the mesons and some of the baryons get degenerate and are
related through a simple law 2m0 for mesons and 3m0 for baryons indicates symmetries of
hadrons that appear after unbreaking (restoration) of the chiral symmetry.

4.5.3 Meson degeneracies and splittings and what they tell us

Restoration of the SU(2)L × SU(2)R chiral symmetry in the vacuum requires the states to fall
into parity-chiral multiplets [99, 100, 57, 58, 66]. Below we shortly summarize a content of
these parity-chiral multiplets for the mesons in our study.

The full set of multiplets of the parity-chiral group SU(2)L × SU(2)R × Ci, where the group
Ci consists of identity and the space inversion, for the J = 1 mesons is as follows:
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Figure 4.5: N(+) with 20 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.6: N(+) with 64 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.7: N(−) with 12 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.8: N(−) with 64 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.9: ∆(+) with 16 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.10: ∆(+) with 128 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.11: ∆(−) with 16 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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Figure 4.12: ∆(−) with 128 eigenmodes subtracted: The correlators for all eigenstates (upper
left), effective mass plot for the two lowest states (upper right), eigenvectors corresponding to the
ground state (lower left). and 1st excited state (lower right).
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(0,0) : ω(0,1−−) f1(0,1++)

( 1
2 ,

1
2)a : h1(0,1+−) ρ(1,1−−)

( 1
2 ,

1
2)b : ω(0,1−−) b1(1,1+−)

(0,1) + (1,0) : a1(1,1++) ρ(1,1−−)

Note, that the unbroken chiral SU(2)L×SU(2)R symmetry requires existence of two independent
ρ-mesons, one of them is the chiral partner of the h1 meson, and the other one of the a1 state.
Similar is true for the ω-meson.
The states from two distinct multiplets ( 1

2 ,
1
2)a and ( 1

2 ,
1
2)b that have the same isospin but

opposite spatial parity are connected to each other by the U(1)A transformation, if the U(1)A
symmetry is broken neither explicitly nor spontaneously. In our real world U(1)A is broken both
explicitly via the axial anomaly and spontaneously via the quark condensate of the vacuum.
So in the world with restored U(1)A symmetry a ρ meson, that is the chiral partner to the
h1 meson, would be degenerate with the b1 state. The h1, ρ, ω and b1 states would form an
irreducible multiplet of the SU(2)L × SU(2)R × U(1)A group.
On top of the chirally symmetric vacuum the ρ− a1 splitting vanishes, see, e.g., Figs. 4.13

and 4.14., a clear signal of the chiral SU(2)L × SU(2)R symmetry restoration in the physical
states. At the same time large b1 − ρ and b1 − ρ′ splittings persist. This is a direct indication
that the U(1)A breaking does not disappear. While that U(1)A breaking component that is due
to the chiral condensate should vanish with the condensate, the U(1)A breaking via the axial
anomaly still persists. Then it follows that there is no direct interconnection of the lowest lying
modes of the Dirac operator and the mechanism of the anomalous U(1)A breaking in QCD.
Such a direct interconnection was suggested in the past through, e.g., the instanton fluctuations.
After unbreaking of the chiral symmetry the ρ and ρ′ mesons become degenerate. What

does this tell us? A degeneracy indicates some symmetry. The two distinct ρ states, ρ and ρ′,
lie in different irreducible parity-chiral representations, ( 1

2 ,
1
2)a and (0,1) + (1,0). In principle,

their degeneracy could point out to a reducible representation of the parity-chiral group
that would include both irreducible representations. Indeed, the product of two fundamental
quark-antiquark chiral representations does contain, in particular, both ( 1

2 ,
1
2)a and (0,1) + (1,0):

[(0, 12) + ( 1
2 ,0)]× [(0, 12) + ( 1

2 ,0)]

= (0,0) + ( 1
2 ,

1
2)a + ( 1

2 ,
1
2)b + (0,1) + (1,0) . (4.6)

Such a multiplet of dimension 16 (including isospin degeneracies) would consist of two distinct
ω-mesons, f1, h1, two ρ-mesons as well as b1 and a1 mesons and would require a degeneracy of
all of them. Now we do find, however, that the b1 meson is well split from both ρ and ρ′ after
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the unbreaking of the chiral symmetry. This rules out that the observed ρ− ρ′ degeneracy is
related to restored chiral symmetry. The degenerate ρ and ρ′ states are different because their
eigenvectors are orthogonal and because they are well split before the removal of the low-modes.
This can be clearly seen from Figs. 4.13 and 4.14. This degeneracy indicates some higher
symmetry that includes chiral SU(2)L × SU(2)R as a subgroup. It is a highly exciting question
what this higher symmetry is. It will be seen from the following subsection that baryons also
point to some higher symmetry.

4.5.4 Baryon chiral multiplets

If chiral symmetry is restored and baryons are still there they have to fall into (some of) the
possible baryonic parity-chiral multiplets. There are three different irreducible representations
of SU(2)L × SU(2)R × Ci for baryons of any fixed spin:

( 1
2 ,0) + (0, 12) , ( 3

2 ,0) + (0, 32) , ( 1
2 ,1) + (1, 12) . (4.7)

The first representation combines nucleons of positive and negative parity into a parity doublet.
The second representation consists of both positive and negative parity ∆’s of the same spin.
Finally, the third representation, that is a quartet, includes one nucleon and one Delta parity
doublet with the same spin.
Extraction of the chiral eigenmodes of the Dirac operator leads to a systematic appearance

of the parity doublets, as it is clearly seen from Figs. 4.13 and 4.14. There are two degenerate
nucleon parity doublets with the same mass. There are also two distinct ∆ parity doublets, but
with different mass. Since our interpolators have spin J = 1

2 for nucleons and J = 3
2 for Delta’s,

we cannot see possible quartets of the ( 1
2 ,1) + (1, 12) type.

It is very interesting that the two nucleon parity doublets get degenerate, while the two Delta
doublets are well split. The former hints at a higher symmetry for the J = I = 1

2 states, while
this higher symmetry is absent for the J = I = 3

2 states.

4.5.5 On the origin of the hyperfine splitting in QCD

The ∆−N splitting is usually attributed to the hyperfine spin-spin interaction between valence
quarks. The realistic candidates for this interaction are the spin-spin color-magnetic interaction
[116, 117] and the flavor-spin interaction related to the spontaneous chiral symmetry breaking
[118]. It is an old debated issue which one is really responsible for the hyperfine splittings in
baryons. Our results suggest some answer to this question. Once chiral symmetry breaking is
removed, which happens for the ground N and ∆ states after extraction of the 50–60 lowest
eigenmodes, the ∆−N splitting is reduced roughly by the factor 2. With the restored chiral
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Figure 4.13: Summary plots: Baryon (top) and meson (bottom) masses as a function of the
truncation level.

symmetry the effective flavor-spin quark-quark interaction is impossible. The color-magnetic
interaction is still there. This result suggests that in our real world the contribution of both
these mechanisms to the ∆−N splitting is of equal importance.
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Figure 4.14: Summary plots: Baryons (top) and mesons (bottom) in units of the ρ-mass at the
corresponding truncation level.

4.6 Conclusions

We have studied what happens with different mesons and baryons upon modifying the valence
quark propagators by removing the lowest lying eigenmodes of the Dirac operator. These
eigenmodes are directly related to the quark condensate of the vacuum via the Banks–Casher
relation. Consequently, upon removal of the lowest eigenmodes we artificially restore chiral
symmetry, what we call “unbreaking” of the chiral symmetry. We study the evolution of the
hadron masses with the number of extracted lowest eigenmodes in dynamical lattice simulations.
There are a few interesting observations.

First, the quality of the signals from the hadrons after removal of the chiral eigenmodes of the
valence quark propagators become much better than with the untruncated propagators. Most
probably this is related to the fact that we artificially remove the pion cloud of the hadrons.
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Second, from the spectral patterns both for the ground and excited mesons and baryons
we conclude that confinement is still there while the chiral symmetry is artificially restored.
Restoration of the chiral symmetry is evidenced by the fact that hadrons, both baryons and
mesons, fall into different parity-chiral multiplets. At the same time there is a clear evidence
that the broken U(1)A symmetry is not restored.

Third, some distinct parity doublets get degenerate upon chiral symmetry restoration. This
indicates that there is some higher symmetry in the chirally restored regime, that includes the
chiral group as a subgroup.
Finally, from the comparison of the hyperfine ∆−N splitting before and after unbreaking

of the chiral symmetry we conclude that in our real world both the color-magnetic and the
flavor-spin interactions between valence quarks are of equal importance.





Chapter 5

Coulomb, Landau and maximally Abelian gauge fixing
in lattice QCD with multi-GPUs

This chapter stems from a project which is only indirectly related to the previous works. It
consists of publication

• [4] Mario Schröck, Hannes Vogt, “Coulomb, Landau and maximally Abelian gauge fixing
in lattice QCD with multi-GPUs”, Comp. Phys. Commun. 184 (2013) 1907-1919

and was originally motivated by the study of the quark propagator under Dirac low-mode
truncation, presented in Chap. 3. The quark propagator is not gauge invariant and thus the
gauge has to be fixed for the investigation of the quark mass function. Gauge fixing on the
lattice is computationally demanding. However, the strict locality of a family of popular gauge
fixing algorithms allows for a very fine grained parallelization and modern graphic processing
units (GPUs) provide the hardware for such a fine grained approach to parallelization. The
difficulty herein lies on the one hand in the memory constraints of GPUs and furthermore in the
tuning of the code towards peak performance which has to take detailed hardware knowledge
of the underlying architecture into account.

5.0 Abstract

A lattice gauge theory framework for simulations on graphic processing units (GPUs) using
NVIDIA’s CUDA is presented. The code comprises template classes that take care of an optimal
data pattern to ensure coalesced reading from device memory to achieve maximum performance.
In this work we concentrate on applications for lattice gauge fixing in 3+1 dimensional SU(3)
lattice gauge field theories. We employ the overrelaxation, stochastic relaxation and simulated

77
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annealing algorithms which are perfectly suited to be accelerated by highly parallel architectures
like GPUs. The applications support the Coulomb, Landau and maximally Abelian gauges.
Moreover, we explore the evolution of the numerical accuracy of the SU(3) valued degrees of
freedom over the runtime of the algorithms in single (SP) and double precision (DP). Therefrom
we draw conclusions on the reliability of SP and DP simulations and suggest a mixed precision
scheme that performs the critical parts of the algorithm in full DP while retaining 80–90% of
the SP performance. Finally, multi-GPUs are adopted to overcome the memory constraint of
single GPUs. A communicator class which hides the MPI data exchange at the boundaries of
the lattice domains, via the low bandwidth PCI-Bus, effectively behind calculations in the inner
part of the domain is presented. Linear scaling using 16 NVIDIA Tesla C2070 devices and a
maximum performance of 3.5 Teraflops on lattices of size down to 643 × 256 is demonstrated.

5.1 Introduction

Quantum chromodynamics (QCD) is nowadays, 40 years after its birth, widely accepted as the
correct theory of the strong nuclear force which binds the protons and neutrons in the cores of
atoms. The guiding principle in the construction of QCD was the local gauge symmetry which
has led before to the very successful theory of quantum electrodynamics (QED) that describes
the interactions of electrons and light. Local gauge symmetry is the freedom to perform a
transformation of the vector fields of the theory, independently at each point of space-time,
without changing the physics the theory describes.

Lattice QCD which lives on a discretized space-time background opposed to the continuous
world of the original theory, offers a formulation of the gauge theory that is well suited to be
simulated on a computer and hence can be used to test the theory against experiment. Further-
more, lattice simulations can help to gain insights in the highly nontrivial, nonperturbative
regime of the interactions between quarks and gluons which are the degrees of freedom of QCD.

The gauge symmetry, given below in its discrete version, states that physical observables will
remain unchanged if a local transformation of the form

g(x)Uµ(x)g(x+ µ̂)† (5.1)

is being carried out. Here, the gauge fields or link variables Uµ(x) as well as the gauge
transformations g(x) are elements of the underlying gauge group which is SU(3) in the case of
QCD. The index µ = 0, . . . ,3 refers to the direction in four dimensional space-time and with
x+ µ̂ we denote the neighbor lattice site of x in the µ-direction. The link variables of lattice
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QCD are connected to the algebra valued continuum gauge fields Aµ(x) via

Uµ(x) = eiagAµ(x) . (5.2)

Whereas physical observables that can be measured in experiments must be independent
of the gauge, fixing the gauge, i.e., choosing a particular gauge transformation g(x) for all x,
is essential when, e.g., studying gauge dependent quantities like the fundamental two point
functions of the theory.
As a typical example of a gauge condition that may be enforced at all space-time points x,

we consider the manifestly covariant Landau gauge

∂µAµ(x) = 0, (5.3)

here stated in the language of continuum field theories. As we will discuss in the next Section,
the continuum gauge condition (5.3) translates to a large scale optimization problem in lattice
QCD with O(V N2

c ) degrees of freedom where V = N3
s ×Nt is the 3 + 1 dimensional lattice

volume. Consequently, the process of fixing the gauge on the lattice demands a major part of
the whole simulation’s computer time and the possible acceleration by highly parallel hardware
architectures like graphic processing units (GPUs) will be of great practical use.

A more conceptual issue of gauge fixing is that the set of gauge transformations g(x) that fulfill
a desired gauge condition is far from being unique. The set of gauge equivalent configurations
of a given gauge field is called the gauge orbit. The gauge fixing condition can be depicted as a
hypersurface living in the space of all gauge fields. Each of the multiple intersections of the
gauge orbit with the gauge fixing hypersurface is called a Gribov copy.
Gribov copies play a crucial role in restoring the BRST symmetry on the lattice: fixing

a gauge via the Faddeev–Popov procedure on the lattice for a compact group boils down to
inserting the sum over signs of the corresponding Faddeev–Popov determinants evaluated at
all the Gribov copies. Neuberger [119] showed that the sum for any covariant gauge turns out
to be zero for any standard model gauge group, SU(N), and for compact U(1), making the
expectation value of a gauge-fixed observable 0/0. The zero comes up because each Gribov
copy comes in pairs with opposite sign of the Faddeev–Popov determinant. This in turn makes
it impossible to construct a BRST symmetry on the lattice. This is called the Neuberger 0/0
problem. Following a topological interpretation of the Neuberger 0/0 problem, in Refs. [120, 121]
a modified lattice Landau gauge was proposed which evaded the problem. There, because
the Faddeev–Popov is shown to be strictly positive (semi-)definite, the cancellation is avoided.
However, it is yet to be shown that the number of Gribov copies in the modified lattice Landau
gauge is independent of the background gauge field. Interestingly, recently, a deep relation
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between lattice gauge fixing and lattice supersymmetry has been proposed in Ref. [122, 123]:
the partition functions of a class of supersymmetric Yang–Mills theories can be viewed as a
gauge fixing partition function à la Faddeev–Popov and the “Gribov copies” are then nothing
but the classical configurations of the theory.
A possible way out of the problem of the existence of Gribov copies is to restrict the gauge

fixing hypersurface to a region which the gauge orbit intersects only once. An example thereof
is the so-called Fundamental Modular Region [124] which contains only that intersection of the
gauge orbit which corresponds to the global optimum of the gauge condition. Unfortunately,
no algorithm is known which finds the global optimum of the gauge condition within finite
simulation time. Simulated annealing, however, has been shown to highly favor optima closer
to the global optimum [125, 126] and moreover it can be shown that, in the limit of infinite
time, simulated annealing actually converges to the global maximum.

Recently, the problem of counting Gribov copies has gained a renewed interest. In Refs. [127],
an explicit formula of the number of Gribov copies for any number of lattice sites is analytically
derived for lattice Landau gauge for the one-dimensional compact U(1) case. In Refs. [128, 129],
a novel method based on Algebraic Geometry [130, 131, 132], which can count all the Gribov
copies, was proposed. Although the method has only been able to work for small lattices, it is
the only known method which guarantees to find all Gribov copies and hence it can work as a
benchmark for other methods. One such alternative method is plain brute force, i.e., running
a standard optimization algorithm over and over again from different starting points on the
gauge orbit and collecting the results consecutively. Clearly, a high performance lattice gauge
fixing code is essential for this task and since here one primarily focuses on small lattices, GPUs
are favorable given the fact that CPU parallelization techniques are very limited for lattices of
small extent.
In this work we present a set of applications for lattice gauge fixing based on the family

of relaxation algorithms and simulated annealing. The applications are based on the CUDA
accelerated Lattice–Graz–Tübingen code1 that is written in CUDA C/C++ and makes heavy
use of template classes in order to facilitate the extension to a broad variety of applications.
Besides the standard relaxation algorithm [133], we support overrelaxation [134] and stochastic
relaxation [135] to overcome the problem of critical slowing down. Moreover, the simulated
annealing algorithm [125] with a heat bath kernel and microcanonical updates which increases
the probability to reach the Fundamental Modular Region has been implemented and tested.
The code can be used to fix gauge configurations to the covariant Landau gauge ∂µAµ = 0,
µ = 0, . . . ,3, the Coulomb gauge ∂iAi = 0, i = 1,2,3 and the maximally Abelian gauge.

1 Available for download at www.cuLGT.com

http://www.culgt.com/
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Previous utilizations of GPUs in the field of lattice QCD mainly focused on solvers of linear
systems [136, 137]

A first attempt of porting lattice gauge fixing with the overrelaxation algorithm to the GPU
has been reported in [2, 7]. An alternative approach based on the steepest descent method has
been presented in [138]. For a more general discussion of lattice gauge fixing and its problems
we refer the reader to [85].

The remainder of this work is organized as follows: in Sec. 5.2 the optimization problem is
stated and the algorithms of choice are presented. In Sec. 5.3 we summarize some hardware
properties of the NVIDIA GPUs that we use for our investigation and moreover briefly discuss
NVIDIA’s programming environment CUDA. Next, in Sec. 5.4, we give details of our implemen-
tation and the cuLGT framework and moreover discuss numerical accuracy issues. To overcome
the memory constraint of single GPUs we extend our implementation to support multi-GPUs;
all details thereto are presented in Sec. 5.5. Finally, in Sec. 5.6 we show various performance
results for single and multiple GPUs and furthermore present some convergence results of the
algorithms. In Sec. 5.7 we summarize and conclude.

5.2 The algorithms

In this Section we will first summarize the defining equations of the optimization problem.
Subsequently, we discuss the various flavors of the update kernels and finally we list the main
underlying algorithm of this work explicitly in terms of pseudo-code.

5.2.1 The gauge functionals

On the lattice, enforcing a gauge condition, e.g., (5.3) is equivalent to maximizing the corre-
sponding gauge functional. We support three different kinds of gauge conditions and here we
give the related gauge functionals and moreover a measure of the iteratively achieved gauge
quality that can serve as a stopping criterion for the algorithm.

Coulomb and Landau gauge

The continuum Landau gauge condition, (5.3), is fulfilled if and only if the lattice gauge
functional

F gLandau[U ] = 1
NcNdV

Re
∑
µ,x

tr
[
Ugµ(x)

]
, (5.4)
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resides in a stationary point with respect to gauge transformations g(x) ∈ SU(Nc). In the above
equation we made use of the short hand notation

Ugµ(x) ≡ g(x)Uµ(x)g(x+ µ̂)†. (5.5)

Furthermore, with Nc we denote the dimension of the gauge group SU(Nc), Nc = 3 for QCD,
Nd is the number of space-time dimensions, (Nd = 4 for our work) and V is the number of
lattice points. When switching to Coulomb gauge, all that changes is that the sum in (5.4)
becomes limited to the spatial components of the Dirac index µ, thus leaving out the temporal
one. Consequently, the optimization of (5.4) for Coulomb gauge can be performed independently
on different time-slices.

A measure θ of how well the Landau/Coulomb gauge condition is satisfied on a given gauge
field configuration is the average L2-norm of the gauge fixing violation ∆(x), i.e., the discrete
derivative of the continuum gauge fields

∆(x) ≡
∑
µ

(Aµ(x)−Aµ(x− µ̂)) = 0, (5.6)

θ ≡ 1
NcV

∑
x

tr
[
∆(x)∆(x)†

]
. (5.7)

Maximally Abelian gauge

The gauge functional for the maximally Abelian gauge is, in the case of SU(2), given by

F gMAG2[U ] = 1
2NdV

∑
x,µ

tr
[
σ3Uµ(x)σ3Uµ(x)†

]
(5.8)

where σ3 is the diagonal matrix of the three Pauli matrices that correspond to the generators
of SU(2). Equivalently, in the case of SU(3) the gauge functional reads

F gMAG3[U ] = 1
3NdV

∑
x,µ

tr
[
λ3Uµ(x)λ3Uµ(x)†

]
+ tr

[
λ8Uµ(x)λ8Uµ(x)†

]
(5.9)

where λ3 and λ8 build the Cartan subalgebra of SU(3). Maximizing (5.9) is equivalent to
minimizing the off-diagonal components A(i)

µ (x), i 6= 3,8 of the continuum gauge fields

Aµ(x) = 1
2

8∑
i=1

λiA
(i)
µ (x). (5.10)
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Note that maximizing (5.8) or (5.9), respectively, is equivalent to maximizing the squares of
the diagonal of each gauge link

F gMAG[U ] = 1
NcNdV

∑
x,µ,i

∣∣(Uµ(x))ii
∣∣2 (5.11)

which is the gauge functional that we use in practice.
When the SU(2) gauge functional (5.8) is stationary with respect to gauge transformations,

then the off-diagonal elements of

X(x) =
∑
µ

(
Uµ(x)σ3Uµ(x)† + Uµ(x− µ̂)†σ3Uµ(x− µ̂)

)
(5.12)

must vanish [139]. Thus, for SU(2) we can use

θ = 1
NcV

∑
x

|(X(x))12|2 (5.13)

as a measure of the gauge quality. The off-diagonal element (X(x))12 reads explicitly

(X(x))12 =
∑
µ

2
(
uµ,0(x)uµ,2(x) + uµ,1(x)uµ,3(x)

−iuµ,0(x)uµ,1(x)− iuµ,2(x)uµ,3(x)

+uµ,0(x− µ̂)uµ,2(x− µ̂) + uµ,1(x− µ̂)uµ,3(x− µ̂)

+iuµ,0(x− µ̂)uµ,1(x− µ̂)− iuµ,2(x− µ̂)uµ,3(x− µ̂)
)

(5.14)

where we adopted the Cayley–Klein parametrization

Uµ =
(
uµ,0 + iuµ,3 uµ,2 + iuµ,1

−uµ,2 + iuµ,1 uµ,0 − iuµ,3

)
. (5.15)

For SU(3), we use equivalently

θ = 1
NcV

∑
x

|(X(x))12 + (Y (x))12 + (Z(x))12|2 (5.16)

where the matrices X(x), Y (x), Z(x) ∈ SU(2) stem from the three SU(2) subgroups of SU(3).

5.2.2 Relaxation

Now that we stated the optimization problem, we can proceed with presenting the algorithms
which we will use to find a solution to the problem before we will discuss the implementation
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with CUDA in the next Section.
The main idea of the relaxation algorithm is to sweep over the lattice site by site while

optimizing the gauge functional locally. Thereby, as we will see below, can all sites of one of
the two parity subsets (think of a checker board decomposition) be optimized at the same time
since the newly generated local optimum is a function of the nearest neighbors only.

In the following we will discuss the calculation of the local optimum separately for Coulomb/Landau
gauge and the maximally Abelian gauge.

Coulomb and Landau gauge

Instead of taking the complete global gauge functional into account,

F gLandau[U ] = 1
2NcNdV

Re
∑
x

fgLandau(x), (5.17)

the relaxation algorithm aims at optimizing the value of F g[U ] locally, i.e., for all x the maximum
of

fgLandau(x) = Re tr [g(x)K(x)] (5.18)

is sought. Here we introduced

K(x) :=
∑
µ

(
Uµ(x)g(x+ µ̂)† + Uµ(x− µ̂)†g(x− µ̂)†

)
(5.19)

where the sum runs over all space-time indices for Landau gauge and for Coulomb gauge it
leaves out the temporal index. The local maximum thereof is, in the case of the gauge group
SU(2), simply given by

g(x) = K(x)†/
√

det [K(x)†]. (5.20)

For the gauge group SU(3) (QCD) one iteratively operates in the three SU(2) subgroups [140]
and thereby optimizes the local SU(3) gauge functional.

Maximally Abelian gauge

Similarly as for the Coulomb and Landau gauges, the goal is to maximize the gauge functional
(5.8) locally. Again, we only need to know how to achieve this for SU(2) and then we can
operate in the SU(2) subgroups of SU(3) for applications in QCD.
Thus, for a given site x we want to maximize

fgMAG2(x) =
∑
µ

tr
[
σ3g(x)Uµ(x)σ3Uµ(x)†g(x)†

+σ3Uµ(x− µ̂)†g(x)σ3g(x)†Uµ(x− µ̂)
]
.

(5.21)
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Let us focus on the part of (5.21) with the up-going links only, i.e., the first term in the sum;
the second term of (5.21) can be treated equivalently.
For the following discussion it will be useful to switch to the Cayley–Klein parametrization

of g(x) and Uµ(x),

g = g01+ i
3∑
i=1

giσi =
(
g0 + ig3 g2 + ig1

−g2 + ig1 g0 − ig3

)
(5.22)

and

Uµ =
(
uµ,0 + iuµ,3 uµ,2 + iuµ,1

−uµ,2 + iuµ,1 uµ,0 − iuµ,3

)
, (5.23)

respectively, where for a simpler notation we suppressed the space-time argument x.
Taking the fact that transformations proportional to σ3 leave the functional (5.8) unchanged

into account (thus setting g3 = 0) one obtains

fup
MAG2(x) =

∑
µ

− 2
(
4g0(g1uµ,0uµ,1 + g2uµ,0uµ,2 − g2uµ,1uµ,3 + g1uµ,2uµ,3)

+ g2
0

(
−u2

µ,0 + u2
µ,1 + u2

µ,2 − u2
µ,3

)
+
(
g2

1 + g2
2

) (
u2
µ,0 − u2

µ,1 − u2
µ,2 + u2

µ,3

) )
.

(5.24)

Using a matrix/vector notation with gT ≡ (g0,g1,g2)T the latter can be written as

fup
MAG2(x) = 2gT


D E F

E −D 0
F 0 −D

 g (5.25)

where we defined

D =
∑
µ

(
u2
µ,0 + u2

µ,3 −
1
2

)
(5.26)

E = 2
∑
µ

(−uµ,0uµ,1 − uµ,2uµ,3) (5.27)

F = 2
∑
µ

(−uµ,0uµ,2 + uµ,1uµ,3) (5.28)

whereby in D we used det [Uµ] = u2
µ,0 + u2

µ,1 + u2
µ,2 + u2

µ,3 = 1.
Then the maximum of (5.24) is found when g is set to the eigenvector of the matrix of (5.25)

corresponding to the largest eigenvalue. The largest eigenvalue is λ =
√
D2 + E2 + F 2 and the
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corresponding eigenvector is (
D +

√
D2 + E2 + F 2 , E , F

)T
. (5.29)

We refer the reader to [139] for more practical details related to the maximally Abelian gauge.

Overrelaxation

In order to reduce the critical slowing down of the relaxation algorithm on large lattices,
the authors of [134] suggested to apply an overrelaxation algorithm which replaces the local
gauge transformation g(x) by gω(x), ω ∈ [1,2) in each step of the iteration. In practice the
exponentiation of the gauge transformation will be done to first order.

Microcanonical steps

Applying a gauge transformation gω(x) with ω = 2 leaves the Landau/Coulomb gauge functional
invariant but these so-called microcanonical steps have the beneficial property to lead to a
faster decorrelation and thus to faster convergence of the functional from which the simulated
annealing algorithm will profit.

Stochastic relaxation

The stochastic relaxation algorithm replaces the local gauge update g(x) by a microcanonical
step g2(x) with probability p and can lead to faster convergence on large lattices.

5.2.3 Simulated annealing

Annealing is a method in condensed matter physics to bring certain materials in their ground
state by first heating them above their melting point and subsequently cooling them down
very slowly. It is crucial hereby that the system is given enough time to thermalize at each
temperature step. If so, the atoms will arrange themselves in such a way that the macroscopic
system ends up in its – or at least close to its – lowest energy state.
The authors of [125] developed an analogy of annealing and mathematical optimization

problems. Following this analogy, the function which is to be optimized corresponds to the
energy of the solid and the optimum is the ground state.

The algorithm then simply performs localMetropolis updates where the acceptance probability
of a random local gauge update g(x) is given by

P [g(x)] =

 1 if fg(x) ≥ f(x)

exp
(
fg(x)−f(x)

T

)
else.

(5.30)
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Thus, while in a hot temperature regime, the algorithm accepts a worsening of the local gauge
functional with a nonvanishing probability which ensures that the algorithm may overcome
local extrema in order to increase the probability to find the global optimum.

In practice, the Metropolis update gets replaced by heat bath updates that generate the new
gauge transformation directly with the right Boltzmann like probability distribution.1 In order
to reach quicker thermalization at each temperature step, we perform three microcanonical
steps after each change in temperature. Note that simulated annealing will never reach the
required gauge precision θ very accurately, instead relaxation or overrelaxation which can be
regarded as simulated annealing in the limit of zero temperature, should be run subsequently
to fully reach the required precision. See also Sec. 5.6.4.

5.2.4 Putting things together

After we have listed the details of the underlying large scale optimization problem and the
techniques to perform local optimizations, we are now in the position to consider the global
optimization algorithm.

As mentioned before, due to the strict locality of the family of relaxation algorithms and the
simulated annealing algorithm, we can perform a checkerboard decomposition of the lattice and
operate on all sites of one of the two sublattices even and odd2 concurrently. All of the above
mentioned algorithms have the same underlying structure which is depicted in Alg. 5.1.

Algorithm 5.1
while precision θ not reached do
for sublattice = even, odd do
for all x of sublattice do
for all SU(2) subgroups do
local optimization: find g(x) ∈ SU(2) Step 1.
which is a function of Uµ(x), Uµ(x− µ̂)
for all µ do
apply g(x) to Uµ(x), Uµ(x− µ̂) Step 2.

end for
end for

end for
end for

end while

We want to stress that the difference of the various update algorithms as well as the difference
between the gauges under consideration lies exclusively in Step 1 whereas, as we list explicitly

1 We use the Philox RNG of the Random123 library[141] to generate random numbers in the heat bath kernel.
2 The sum over the space-time indices t+ x+ y + z determines whether a site is considered even or odd.
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in A.2, the main work of the algorithm lies in Step 2 which is independent of the update type
and of the target gauge.

5.3 CUDA

Here we briefly introduce the CUDA (Compute Unified Device Architecture) programming
model and summarize the hardware properties of the GPUs we adopt in our study.

5.3.1 The programming model

The CUDA model demands the division of the underlying problem into subproblems, so-called
thread blocks, that can be treated independently from each other in parallel. These thread
blocks, on the other hand, are ensembles of threads and the threads within a thread block
may communicate with each other through shared memory. The independent thread blocks
then form a so-called grid. This model is very flexible and allows the user to run a CUDA
application on different hardwares (meaning different number of streaming multiprocessors
(SMs) and CUDA cores) without the need for major adjustments.1 This abstraction layer is
introduced into the C language by defining a new set of functions which are called kernels and
are identified by the __global__ declaration specifier. The kernel is executed N times where

N = block size× grid size (5.31)

and each kernel call is a thread in the nomenclature introduced above. For the invocation of
the kernel a new syntax is introduced where the block size and the total number of blocks
(grid size) is specified. A unique index is given to each thread to assign, e.g., different memory
addresses to different threads.

A group of 32 threads (the number depends on the hardware generation) of the same block are
tied together to what is called a warp. The operations of all threads within a warp are executed
simultaneously as long as they follow the same instruction path. Otherwise, the operations
become serialized resulting in up to 32 cycles instead of one, a warp divergence occurs.
To efficiently hide memory latencies it is inevitable to have many warps active at the same

time on a SM. The possible number of active blocks (or warps) depends on the available
hardware that has to be divided among the threads, e.g., it depends on how many registers and
how much shared memory is needed for an individual kernel.

1 Since we exclusively adopt devices of the Fermi generation, the characteristic of the SMs is always the same
for our tests, see Sec. 5.3.3.
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5.3.2 Memory layout

In the CUDA terminology the CPU on which the CUDA application is run is called the host,
whereas the GPU is called device and the associated memory is called host and device memory,
respectively. Communication between host and device memory is the main bottleneck. Although,
for many single GPU implementations, communication is only necessary in the beginning and
in the end of an application. How one effectively can deal with communication from device to
device through the host memory in multi-GPU simulations is discussed in Sec. 5.5. The part of
device memory that is accessible from the host as well as from all CUDA threads is called global
memory. Global memory is allocated by a command in the host code. Each thread may then
allocate its private local memory which resides in the same physical memory as global memory.
Global and local memory are both cached in a L1 and L2 cache by default (for Fermi), on a
cache miss the latency to device memory is very high. For most applications the bandwidth to
device memory is another limiting factor, although it is large compared with a common CPU
to RAM bandwidth.
For communication within a block shared memory can be used. Shared memory has a very

low latency since it resides in the same hardware as the L1 cache.

5.3.3 Hardware

We adopt four different NVIDIA Fermi GPUs for our study, the GTX 480 and GTX 580 from the
consumer section and moreover the Quadro 4000 and the Tesla C2070 from the scientific/HPC
section. The Tesla C2070, opposed to the consumer cards, supports ECC (error correcting
code) protection for DRAM. Recently, the successor of the Fermi architecture has been released
(Kepler). In Tab. 5.1 we give the data which is common to all Fermi GPUs, the hardware
details of the individual devices are summarized in Tab. 5.2.

compute capability 2.0
cores / SM 32 per SM
warp size 32
L1 cache / SM 16 KiB or 48 KiB
shared memory / SM 16 KiB or 48 KiB
32-bit registers / SM 32768 (32Ki)
max. registers / thread 63

Table 5.1: Specifications of the Fermi architecture.
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GTX 480 GTX 580 Quadro 4000 Tesla C2070
graphics clock 700 MHz 772 MHz 475 MHz 575 MHz
SMs 15 16 8 14
total CUDA cores 480 512 256 448
device memory 1.5 GiB 1.5 GiB 2 GiB 6 GiB
memory bandw. 177.4 GB/s 192.4 GB/s 89.6 GB/s 144 GB/s

Table 5.2: Hardware details of the Fermi devices that we adopt in this work.

5.4 Implementation details

5.4.1 Code design

The design goal of our code was the minimization of local memory usage. One of the main
limiting factors of performance is the number of registers that are available per thread: on Fermi
GPUs, the latter bound is 63 registers of 32-bit each. If more variables (on the assembly level)
are needed per thread, the registers are “spilled” to local memory. Local memory, as mentioned
earlier, uses the same hardware as global memory and thus has the same (high) latency and
bandwidth bounds. Besides register spilling another source of local memory usage may slow
down the execution of a kernel: registers are not addressable and therefore will arrays generally
be placed in local memory. In order to capacitate the compiler to place arrays in registers, the
size of the arrays and all index variables that access elements need to be computable at compile
time1. Early versions of our code fulfilled this requirement by manually unrolling all loops and
using C macros to access array elements. The present code, however, uses template parameters
for the lattice dimensions and the dimension Nc of the gauge group SU(Nc). As a consequence,
unrolling can perfectly be done by the compiler. This code design offers a very flexible setup
for further lattice applications.

5.4.2 Reduce memory transfers

In order to reduce memory transfers between global memory and the kernel a 12 parameter
representation of the SU(3) matrices has been suggested [142, 136], i.e., only two rows of the
matrix are stored and loaded. If we denote the first and the second row of the matrix with
vectors u and v, respectively, then the third row is given by (u×v)∗. The extra numerical work
to reconstruct the full matrix is hidden since our kernels are bound by memory transactions
and not by floating point operations. This optimization reduces the number of bytes to load
and store per site from 576 bytes to 384 in single precision.

1 The latter statement implies that, for example, all for loops have to be unrolled.
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Memory pattern

Due to the hardware design of NVIDIA GPUs one has to adopt special memory layouts to
efficiently utilize the memory bus to global memory. The peculiarity of these devices is that
memory transactions of threads of the same warp are coalesced if they reside in the same
128-byte aligned segment in global memory. Consequently, neighboring threads (i.e. neighboring
sites) should access neighboring memory addresses to achieve high memory throughput. A
natural memory layout where the gauge links (SU(3) matrices) are stored in one block in
memory does not fulfill these requirements, hence the index order of the gauge fields in memory
has to be adapted.

The authors of [138], e.g, use the native CUDA datatype Float4 and therefore distribute the
12 real numbers of a SU(3) element (in the 12 parameter representation, see Sec. 5.4.2) to three
Float4 arrays. In contrast, we build on a more flexible way by employing one large float or
double array, respectively, in combination with an access pattern class that hides the memory
layout from the user. This strategy allows us to easily change the memory layout depending on
the properties of the underlying application.
Here we list explicitly the memory patterns that are in use in our gauge fixing applications,

whereby the slowest running index is listed first:

• StandardPattern (natural layout): t, x, y, z, µ, i, j, c

• GpuPattern: µ, i, j, c, p, [t, x, y, z]p

• GpuPatternTimeslice: t, µ, i, j, c, p, [x, y, z]p

• GpuPatternParityPriority: p, µ, i, j, c, [t, x, y, z]p

• GpuPatternTimesliceParityPriority: t, p, µ, i, j, c, [x, y, z]p

where i, j ∈ {0,1,2} are the matrix indices, c identifies real (c = 0) and imaginary (c = 1) part
of the complex number, µ ∈ {0, . . . , 3} is the direction of the link, t is the index in temporal
direction and x,y,z correspond to the spatial components. The index p ∈ {0,1} stands for parity
(even and odd, respectively) and in those patterns where it is in use the space-time indices are
split into two groups

[t, x, y, z]p := { t, x, y, z| t+ x+ y + z mod 2 = p} (5.32)

and equivalently for [x, y, z]p. Parity splitting is necessary to achieve coalesced access to global
memory, since we operate on the parity even and odd sublattices separately (see Alg. 5.1).

The GpuPattern is used in the single GPU implementations of Landau and maximally Abelian
gauge. For Coulomb gauge we employ the GpuPatternTimeslice for the global gauge field array
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and the GpuPattern in kernels that operate on 1×N3
s sublattices, i.e., within a single time-slice.

To reduce memory traffic between the nodes in the multi-GPU implementation we adopt the
GpuPatternTimesliceParityPriority. This allows that only the active parity of the time-slices at
the border can be transferred between nodes. All applications use the StandardPattern to read
and write files with the natural ordering.
All patterns assume that the global array is allocated for full 18 parameter SU(3) links

although the applications load and store only 12 parameters.

Representation of the SU(3) link variables

We define a template class SU3 with a template parameter that determines the storage type.
For matrices that reside in the global memory array we offer a class Link with three parameters:
(1) the pointer to the global memory array, (2) a lattice site given in terms of an object of
type SiteIndex and (3) the direction µ. No memory is allocated for SU3〈Link〉 variables. For
local matrices we offer the class Matrix which allocates local memory (or uses registers when
possible) for matrix elements. Functions for copying between SU3〈Link〉 and SU3〈Matrix〉 are
implemented, as well as functions to load only the first two rows (12 parameter representation)
of the matrices as well as a function to restore the third row.

5.4.3 The eight-threads-per-site strategy

Within every iteration of the gauge fixing algorithms each site update needs its adjacent links.
These are read from global memory and after the update they have to be written back to
global memory. After having restored the third line, these eight SU(3) matrices per site equal
8× 18 reals = 144 reals and therewith exceed the register limit of 63 per thread what results in
register spills to global memory and as a consequence negatively effects the bandwidth bound
performance of the kernel.
With the purpose of reducing register spills, we switch to a finer parallelization granularity:

instead of assigning one thread to one lattice site we now tie eight threads to a single lattice
site, i.e., one thread for each of the eight matrices that are involved in a site update. As a
result, each thread needs only 18 registers to store the gauge link.

In order to avoid warp divergences the kernel is invoked with a thread block size of 8×32 = 256.
By doing so, each of the eight warps takes care of one neighbor type of the 32 sites and thus all
threads within one warp follow the same instruction path.
The gauge transformation is then accumulated in shared memory. Since one operates on

the SU(2) subgroups of SU(3) and an SU(2) matrix can conveniently be represented by four
reals, this requires 4× 32 = 128 reals or 512 bytes (SP) or 1024 bytes (DP) per thread block.
To avoid race conditions on the shared array the accumulation is done using the atomic_add
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function in single precision and by explicit serialization using __syncthreads() in combination
with if -statements in double precision1.

The benefit of this strategy is that, in single precision, no register spillings occur at all if no
further constraints on the kernel are applied (see Sec. 5.4.4) and for double precision, register
spills are drastically reduced. The drawback of the current implementation compared to a
more conventional one-thread-per-site strategy is that the number of simultaneously computed
sites per multiprocessors is decreased. Nevertheless this strategy results in a clear overall
performance gain [7].

5.4.4 Optimizations

Besides the aforementioned algorithmic optimizations we further tuned our code by optimizing
the CUDA settings.
First of all we set launch bounds to individual kernels: by specifying the number of threads

per block and a minimum of active blocks a bound on the maximal register usage is given.
Without launch bounds the compiler uses 45 registers in the overrelaxation kernel for Landau
and Coulomb gauges, resulting in a theoretical occupancy of 42%. By setting the register limit
to 32 the theoretical occupancy is increased to 67% on the cost of a small amount of register
spilling (24 byte stack frame, 24 byte spill stores, 40 byte spill loads).2 The same settings are
applied to the other gauge fixing kernels.
Fermi devices have a L1 cache that physically shares the same 64 KiB hardware (per SM)

with shared memory. The size of the L1 cache and shared memory can be set by the user for
each kernel. Since we only need 512 Byte shared memory per block and a maximum of 4 blocks
is possible, we only need a total of 2 KiB shared memory per SM. This allows us to set the
kernel to a prefer L1 cache configuration which means 16 KiB shared memory and 48 KiB of L1
cache. With this setting the register spilling introduced by the launch bounds is cached more
efficiently.
By a global compiler switch, the use of L1 cache can be set to either caching (default) or

non-caching (-Xptxas -dlcm=cg) loads. By using non-caching loads our applications shows a
small improvement in performance. This is due to the fact that the use of global memory is
designed such that only in the beginning of each kernel the matrices are loaded to local memory
(i.e., into registers) and after all operations are finished they are written back. In between there
is no reuse of cached data and thus there is no benefit in caching at all. With non-caching load

1 atomic_add is not supported for datatype double.
2 The given values for register usage and spilling are for CUDA Toolkit 5.0 compiled for compute capability

2.0. They vary between different between CUDA 4.x and 5.0 but the optimal launch bounds are found to be
the same.
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the L1 cache is solely used for register spilling and write-backs of register spills to the device
memory are reduced or totally removed.
In all applications we compile with the use_fast_math switch. Single precision operations

are then replaced by faster implementations on the expense of precision though we did not
experience any effects by this setting. For double precision operations there is no such option.

5.4.5 Numerical accuracy

In the following we investigate the accumulation of numerical rounding errors within our lattice
gauge fixing applications. A suitable measure is the conservation of unitarity of the SU(3)
matrices during the progress of the algorithm through many iterations. In Fig. 5.1 we show
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Figure 5.1: Conservation of unitarity (|1− det [(]U)|) in SP, MP and DP.

1
4V

∑
µ,x

|1− det [(]Uµ(x))| and max
µ,x
|1− det [(]Uµ(x))| (5.33)

from a run over 12000 iterations of the overrelaxation update on a 324 lattice in single (SP)
and double (DP) floating point precision. Moreover the plot shows lines corresponding to a
mixed precision (MP) ansatz which calculates the overrelaxation gauge update on the SP gauge
fields in full DP (see Fig. A.3) while the less precision demanding application of the gauge
transformation to the links (Step 2 in Alg. 5.1) is performed in SP.
In DP, both, the average and even the maximal value stay well below 10−12 whereas in SP

the error accumulates to the order 10−3. To overcome the loss of unitarity, one may use the
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unitarity as a constraint and thus reproject the links to SU(3) after a given number of iteration
steps.
The peaks in the SP maximum lines are individual outliers that occur approximately every

1000 iterations in one of the links of a 324 lattice on our GTX 580, whereas they could not be
detected on the Quadro 4000.
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Figure 5.2: The value of the Landau gauge functional F gLandau[U ] as a function of the number
of iterations of the overrelaxation kernel in single (SP), mixed (MP) and double precision (DP).
In addition, the evolution of the functional value is shown when a reprojection to SU(3) is done
every 100 iteration steps in SP and MP. The inner plot gives relative deviation of all curves
(except SP without reprojection) from the final functional value in DP.

Whether or not the loss of high precision unitarity in SP is of significance, depends of course
on the individual problem the code is applied to. In Fig. 5.2 we show the value of the Landau
gauge functional which is the sensitive quantity in our applications, in different precisions, again
over 12000 iterations1 on a 324 lattice. It becomes obvious that SP without reprojection is
not a good choice for lattice gauge fixing since the value of F g even starts to decrease after
around 3000 iterations. The DP functional value increases monotonically and finally reaches a
plateau, this fact together with the previous mentioned maintenance of high precision unitarity
lets us conclude that a DP simulation, even without reprojection, is very accurate. Thus, we
can use the DP value as a benchmark for the other approaches. In the inner plot of Fig. 5.2
we show the relative deviation of each curve to the final DP result: SP with reprojecting to

1 The gauge precision thereafter was θ < 6.0× 10−11 for the run in DP.
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unitarity after every 100 steps and MP without reprojection stay within a relative deviation of
2× 10−5 and MP with reprojection even within 5× 10−6. Moreover, the MP line shares the
same qualitative behavior as the DP curve (monotonicity, convergence to a constant).
Therefore, our conclusion for the required floating point precision in lattice gauge fixing

is as follows: in case one is primarily interested to actually fix the gauge of a gauge field
configuration without being interested in the precise value of the resulting gauge functional, SP
with reprojection is fine. If it is required to obtain the gauge functional value within a precision
of no more than 10−5, MP with reprojection is recommended since it retains most of the SP
performance, as we will show in Sec. 5.6, opposed to DP which should only be chosen when one
depends on a high precision result in the value of the gauge functional.

5.5 Multi-GPU

In the following discussion we will replace the space-time argument x = (x, t) by the time
argument t alone wherever the x dependence is of no significance in the given context. Moreover,
we will assume that one MPI process is assigned to one GPU device and thus use the terms
process and device interchangeably.
In order to share the work which has to be performed locally on each lattice site, between

several processes, we adopt a straightforward domain decomposition: we split the lattice of size
N3
s ×Nt into Nt/nprocs partitions, where nprocs denotes the number of processes involved in

the parallelization. For Coulomb gauge this splitting is trivial since, as we discussed above,
we can operate on the different time-slices separately and only need to apply the final gauge
transformation g(t) of the time-slice Uµ(t) to the temporal components of the preceding time-
slice U0(t− 1). This makes on-the-fly communication between devices for Coulomb gauge fixing
unnecessary.

Manifestly covariant gauges like the Landau gauge and the maximally Abelian gauge, on the
other hand, are more subtle. Here, all four neighboring links in the negative µ-direction have
to be collected on each site x in order to calculate the gauge update g(x) which subsequently is
applied to all the eight links connected to the site x. Thus, with the ansatz of splitting the
lattice across the temporal direction, we have to exchange the temporal components U0(x) of
the gauge fields on time-slices that lie at the boundary of two processes.

5.5.1 Data exchange between neighboring devices

If we label the minimum time-slice that resides on a given device with tmin and the maximum
time-slice with tmax, then only the calculation of the local gauge transformations g(tmin)
depends on the data exchange between different processes since for its calculation the gauge



5.5 Multi-GPU 97

links Uµ(tmin−1) that reside on the neighbor process are needed. Note that since we operate on
the parity even and odd lattice sites consecutively, the currently active parity of the time-slice
Uµ(tmax) is completely unaffected by the exchange with the neighboring process that only
touches the passive parity part of Uµ(tmax). That means, on a given process, all time-slices
except tmin can be updated without exchanging any information with the neighbor processes.
In order to update the Uµ(tmin) on all devices, however, the following set of instructions has to
be carried out on each device in order to transfer the links U0(tmax) of device i to device i+ 1:

1. cudaMemcpyDeviceToHost of U0(tmax) (inactive parity)

2. MPI_Send of U0(tmax) to device i+ 1 and MPI_Recv of U0(tmin − 1) from device i− 1

3. cudaMemcpyHostToDevice of U0(tmin − 1)

4. update Uµ(tmin) (active parity) which affects U0(tmin − 1) (inactive)

5. cudaMemcpyDeviceToHost of U0(tmin − 1) (inactive parity)

6. MPI_Send of U0(tmin − 1) to device i and MPI_Recv of U0(tmax) from device i+ 1

7. cudaMemcpyHostToDevice of U0(tmax)

5.5.2 Data pattern

The memory pattern GpuPatternTimesliceParityPriority, introduced in Sec. 5.4.2, will be the
pattern of choice for applications that get accelerated by a time-slice split multi-GPU approach.
Not only is the time-index running slowest and thus allows to handle different time-slices
separately in the latter mentioned pattern, moreover the time-slice internal pattern is very
advantageous: each time-slice is split into its two parity parts of which each has the Dirac index
µ running fastest, followed by the row index of the individual gauge matrices.

This layout ensures that the data which has to be exchanged, the first two rows (12 parameter
representation) of the link variables U0(tmin) of a given parity, lie contiguous in device memory.
The size of the data block that has to be exchanged is then given by the size of a time-slice
multiplied by 1/2 (parity), 1/4 (Dirac index) and 2/3 (12 parameter representation), thus 1/12
in total.

5.5.3 Asynchronous memory transfers

We target at hiding the data exchange between different devices by overlapping them with
calculations on the unaffected time-slices. Replacing the CUDA function cudaMemcpy with
cudaMemcpyAsync results in a non blocking copying process from host to device or vice versa.
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Making use of different cudaStreams a device can then perform a copying request and execute a
kernel at the same time.
In order to investigate how many time-slices are needed per device to fully hide the data

exchange between two devices, we measured the time for the execution of the overrelaxation
kernel on one time-slice and the time for a transfer of 1/12 of a time-slice for different spatial
lattice sizes N3

s and averaged the result over 1000 iterations, see Tab. 5.3. As we can read
off from the table, the asynchronous kernel execution on two time-slices takes longer then a
device to host or host to device copy process, respectively. As discussed above, the necessary
data exchange between two devices includes in total four such copy processes and thus eight
time-slices are enough to reach a complete overlap of data exchange from device to host (host
to device) and calculations in the inner part of the domain.
So far we neglected the data exchange via MPI between the two neighboring host processes.

As for the data exchange between host and device, here again it is advantageous to use non
blocking functions for the data exchange, i.e., MPI_Isend and MPI_Irecv. By doing so we can
again overlap the data exchange between the processes by calculations on time-slices that are
not involved in the exchange.

In practice, we implemented the overlap of calculations with the data exchange between the
processes and between host and device as a method of a communicator class. Then we only
have to set up a certain update type (overrelaxation, simulated annealing etc.) and the apply
method of the communicator object applies that update including full overlap with the data
exchange.

N3
s D2H [µs] H2D [µs] kernel [µs] D2H/kernel H2D/kernel

16 0.0398 0.0368 0.0209 1.90 1.76
32 0.2543 0.2276 0.1443 1.76 1.58
64 1.2510 1.1830 1.0489 1.19 1.13
128 8.9597 8.7169 8.3041 1.08 1.05

Table 5.3: The time needed to copy the relevant part (1/12) of a time-slice from device to host
(D2H) and host to device (H2D) compared with the time needed to update one time-slice with
the overrelaxation kernel (all in µs) averaged over 1000 iterations for different spatial volumes
N3
s . The two most right columns give the ratios.
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5.6 Results

In this Section, we firstly examine the performance of the code on various devices including
multiple GPUs. There, we pick the Landau gauge overrelaxation kernel as a representative for
all kernels and gauges. Secondly, we outline a few sample results obtained by the application of
our lattice gauge fixing code.

5.6.1 Performance on single-GPUs

In Fig. 5.3 we show the performance of the overrelaxation kernel on the GTX 580 for different
spatial volumes as a function of the temporal lattice extent. The data stems from an average of
one hundred repeated applications with 1000 iterations each. We achieve up to 370 GFlops in
SP, up to 300 GFlops in MP and 80 GFlops in DP. The maximum performance of 370 GFlops
corresponds to an execution time of 6.4 s with the given lattice size and number of iterations.
For the smaller lattices the theoretical occupancy of the device is not reached and therefore the
maximum performance is not achieved. Apart from that, we find almost constant performance
for all lattice volumes.

In Fig. 5.4 we compare the performance of different Fermi devices on lattices of size 324. Our
top performers in SP are the GTX 580 with nearly 370 GFlops, followed by the GTX 480 at
around 300 GFlops. The difference between these devices results from the reduction in chip
clock, number of SMs and bandwidth. The scientific GPUs are designed for a longer runtime
and therefore the chip clock is remarkably lower. Thus, the performance of the C2070 is only
close to 200 GFlops, the Quadro 4000 is at around 120 GFlops. Noteworthy is the difference
between single and double precision: the theoretical ratio of SP to DP arithmetic operations for
the scientific devices is 1:2, whereas the consumer GPUs have a ratio of 1:8. Accordingly, the
performance ranking changes: still the GTX 580 performs best with approximately 80 GFlops,
now followed by the C2070, slightly faster than the GTX 480 at around 70 GFlops. Thus, even
for the scientific GPUs the theoretical factor of a half compared to SP could not be reached.
The reason is that approximately twice as many registers are needed in DP and therefore even
for the maximum of 63 registers spilling occurs. Additionally, the theoretical occupancy is
reduced by the increase in registers.
The performance data given above is intended for comparing the algorithm on different

architectures. Is is based on counting Flops as described in A.2. The actual number of operations
differs since we did not count the overhead for computing the third line reconstruction and we
did not account for fused multiply-add operations. A true measure for the performance of our
code is the number of instructions per cycle (IPC). For the top performer, the GTX 580, the
IPC in SP is 1.49 which means roughly 75% of the peak performance, since a maximum of 2
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instructions is issued per cycle. On the other hand, the global memory throughput is 120 GB/s
which is only approximately 60% of peak. Combining these results, the most likely performance
bound is not memory bandwidth, but memory latency which could theoretically be cured by
increasing occupancy. In practice this is not possible, since this would mean further decreasing
registers per thread and thus introducing additional register spilling.
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Figure 5.3: Performance of different spatial volumes as a function of the temporal lattice ex-
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5.6.2 Performance on multi-GPUs

Our multi-GPU performance tests have been carried out on the “mephisto” cluster at the
University of Graz. The cluster provides five compute nodes with four NVIDIA Tesla C2070
GPUs and CUDA 5.0. Moreover, each node offers two Intel Xeon Six-Core CPUs X5650
(“Westmere”) @ 2.67GHz on each node. The nodes are connected via InfiniBand and OpenMPI
1.4.3 and CUDA 5.0 is installed.

In the plot of Fig. 5.5 we show that linear weak scaling is reached with this strategy. The test
have been performed on lattices of size 643 × 32 per GPU (643 × 512 in total with 16 GPUs)
and 484 per GPU (483 × 768 in total with 16 GPUs). The higher performance of the spatial
volume of 643 is simply due to higher occupancy: since we operate on single time-slices at a
time, the lattice of spatial size 483 is not sufficient to efficiently occupy the device.
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Figure 5.5: Weak scaling on the Tesla C2070 in single (SP), mixed (MP) and double precision
(DP). The full symbols correspond to a lattice size of 643 × 32 per GPU and the open symbols to
484 per GPU.

In Fig. 5.6 strong scaling is tested. For a total lattice size of 643 × 256 we find close to linear
strong scaling up to 16 GPUs which corresponds to 16 time-slices per device. On a lattice of
size 643 × 128 we find for 16 GPUs (eight time-slices per device) a performance loss of 15–30%
(DP vs. SP). When moving on to a smaller temporal lattice extent, Nt = 96, the performance
decreases further. Moreover, for this lattice size, no gain in performance is apparent when
adopting 16 instead of 12 devices.
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Figure 5.6: Strong scaling on the Tesla C2070. The spatial lattice volume is kept fixed at 643

and the total temporal extent varies for the three lines (per precision) from the top downwards
Nt = 256, 128, 96.

5.6.3 Comparison to existing CPU code

Lastly, we compare our performance to the overrelaxation kernel of the FermiQCD library [143].
The FermiQCD toolbox is open source (C++) and has been designed to be easy to use while at
the same time offering the user many applications for lattice QCD, in some applications at the
expense of performance. To our knowledge, it is the only publicly available code that supports
lattice gauge fixing with the overrelaxation algorithm in Landau gauge. We would be happy to
compare our code with a wider range of implementations.
As test bed we chose an Intel Xeon Westmere CPU on the mephisto cluster, see Sec. 5.6.2.

We run the FermiQCD Landau gauge overrelaxation kernel in SP on a lattice of size 324 on a
single core in avoidance to reflect parallelization artifacts. Then we compare the performance
to our code (same lattice size and precision) from the Tesla C2070 that the cluster offers.
FermiQCD reaches a performance of 0.414 GFlops and our code reaches for this setup 195.08

GFlops. Thus, our implementation executed on the Tesla GPU is equivalent to FermiQCD
executed on ≈ 470 CPU cores of the given type, under the naive assumption of linear scaling
for the CPU code.
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5.6.4 Temperature dependence of the simulated annealing algorithm

In Sec. 5.2.3 we discussed the importance of keeping the temperature gradient small in the
simulated annealing. Therefore, it is crucial to set up the right temperature interval in order not
to waste many iteration steps in a temperature region where the gauge functional is insensitive
to.
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Figure 5.7: The temperature dependence in simulated annealing of the gauge functional F g[U ]
and the gauge precision θ of the Landau gauge and the maximally Abelian gauge.

In Fig. 5.7 we show an example of the evolution of the gauge functional F g[U ] and the gauge
precision θ of the Landau gauge and the maximally Abelian gauge. The simulation has been
performed on a hot gauge field, i.e., having all gauge links set to random SU(3) matrices. The
lattice size is 324 and for both cases 10,000 simulated annealing steps have been carried out.

As one can read of from the plot, in this case, the sensitive region where the gauge functional
changes most is for Landau gauge below T < 4 and for the maximally Abelian gauge slightly
lower, T < 2.

5.6.5 Cooling down to maximally Abelian gauge

Here, we aim at reducing the time and number of iterations to gauge fix a configuration to the
maximally Abelian gauge. We test overrelaxation versus a combination of simulated annealing,
stochastic relaxation and overrelaxation in terms of required number of iterations to gauge fix
a sample gauge configuration with inverse coupling β = 5.7 and lattice size 324.
Both approaches use an overrelaxation parameter of ω = 1.35, the second method starts off

by applying 2000 simulated annealing steps including three microcanonical updates after each
step (i.e., 8000 steps in total). Subsequently, a maximum of 2000 stochastic relaxation steps are
applied and lastly overrelaxation until the precision θ < 10−12 is reached. Method one directly
applies the overrelaxation kernel until convergence.
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We started both variants on 100 randomly chosen points on the gauge orbit. Method one
succeeded to find an optimum for 84 out of the 100 copies, the remaining 16 got stuck at a value
of θ ≈ 10−7 until the algorithm was stopped after one hundred thousand iterations. Method
two was successful for 97 copies.
The average number of required iterations (the combined number of all updates) is given in

Tab. 5.4, together with the final value of the gauge functional F g[U ].
As it is evidence from the data, the combined approach of simulated annealing, stochastic

relaxation and overrelaxation outperforms the pure overrelaxation method in terms of number
of iterations by a factor of almost two and moreover reaches an higher average value of the
gauge functional while bringing more gauge copies to converge. The average time spend by the
device (GTX 580) per gauge copy was four minutes for method two and slightly below seven
minutes for method one. It has to be stressed, however, that not all gauge copies converged
and hence these copies enter the average of the execution time with a biased weight since the
kernel was executed until the maximum number of iterations was reached.

5.6.6 Towards the global maximum of the Landau gauge functional

We take the same gauge field configuration with β = 5.7 and lattice size 324 of the previous
subsection and now aim at finding Landau gauge Gribov copies with gauge functional values as
high as possible. Three runs with 100 random starts on the gauge orbit have been performed.
The difference of the three runs lies in the number of simulated annealing steps that are applied
before the overrelaxation kernel takes over. We apply zero, three thousand or ten thousand
simulated annealing steps, respectively. The temperature has been decreased from 4 down to
10−4. Each simulated annealing step is followed by three microcanonical updates. Subsequently,
we apply the overrelaxation kernel until θ < 10−10.

We determined the maximum gauge functional value of all the runs, which we denote by
F gmax and define the relative deviation from it by

F grel = F gmax − F g

F gmax
. (5.34)

OR SA/SR/OR
# of converged copies 83 97

# of iterations 272340± 8405 16701± 2562
F g[U ] 0.74356431(39697) 0.74423815(10996)

Table 5.4: Comparing the application of the overrelaxation algorithm (OR) solely, to the subse-
quent application of simulated annealing (SA) with microcanonical steps, stochastic relaxation
(SR) and OR on 100 copies of a gauge field of lattice size 324.
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Figure 5.8: The relative deviation from the maximal gauge functional. From left to right with
10000, 3000 and zero simulated annealing steps.

The latter is plotted in histograms in Fig. 5.8 for all the three runs. The plot clearly demonstrates
how the application of simulated annealing increases the chance to find the global maximum,
especially on a relatively large lattice of size 324. This test has been performed in parallel on
two Tesla C2070 devices within several hours.

5.7 Summary

We presented a CUDA implementation for gauge fixing in lattice gauge field theories based on
the relaxation algorithms. The code is based on the cuLGT package1 and supports the Landau,
Coulomb and maximally Abelian gauge fixing conditions.

The implementation and the various optimization strategies have been discussed in detail. We
showed that simulated annealing and overrelaxation can heavily be accelerated by employing
GPUs. We listed convergence results in different floating point precisions and concluded that
a mixed precision ansatz that performs only the critical parts of the simulation in double
precision is a good compromise in terms of precision (∼ 10−5 relative to DP) and performance
(80%− 90% of SP).

A maximum sustained performance of 370 GFlops on a single GTX 580 has been reached
and moreover linear scaling on 16 Tesla cards with 3.5 Teraflops, given that the number of
time-slices per device does not fall below 16.
Lastly, we demonstrated how the combination of simulated annealing and the various

relaxation flavors can be tuned in such a way that either fast convergence to the gauge
of choice is reached or alternatively that a gauge functional value as high as possible is obtained.

We are currently preparing tests on the Kepler architecture, updates on Kepler performance
will be available on our homepage shortly.

1 Both is available for downloaded under www.cuLGT.com.

http://www.culgt.com/




Chapter 6

Locality, sea quarks and more

In this chapter additional, yet unpublished material on the subject of Dirac low-mode truncation
and artificial chiral restoration is collected. In particular, in Sec. 6.1 we demonstrate that
locality violation is small for the truncated Dirac operators that we construct. In Sec. 6.2, we
present a possible extension of Dirac low-mode truncation to the sea quark sector that relies
on a reweighting method and, finally, in Sec. 6.3 we test an alternative method to artificially
restore the chiral symmetry, which is not based on Dirac low-mode truncation.

6.1 Locality properties of the truncated CI Dirac operator

Locality of the Dirac operator is a vital property for a quantum field theory since it ensures the
causality of the theory. The original CI Dirac operator is, like the Wilson operator, ultra local
by definition. The Neuberger overlap operator, on the contrary, must violate locality at finite
lattice spacing [144]. The authors of [145] have shown, though, that the nonlocal contributions
of the overlap operator fall exponentially with the distance r/a to the source point and thus, in
the naive continuum limit locality will eventually be restored. It is not clear a priori to what
extent the exclusion of the low lying part of the Dirac eigenspectrum, like done in this work,
violates the locality of a Dirac operator like the CI operator. The latter will be analyzed here.

The magnitude of the nonvanishing contributions of a column of the (hermitian) Dirac
operator to the source point, as a function of the distance to the source serves as a measure of
locality [145]. A single column of the Dirac operator is given by

ψ(x)[x0,α0,a0] =
∑
y

D5(x,y) η(y)[x0,α0,a0] (6.1)

107
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where we use matrix/vector notation in color and Dirac space and the multiindex [x0,α0,a0]
labels a point-source

ηαa (y)[x0,α0,a0] = δ(y − x0) δαα0 δaa0 . (6.2)

In practice we set x0 = 0 without loss of generality. Eq. (6.1) defines a set of 12 columns of the
Dirac matrix, one for each combination of color a0 and Dirac α0 indices.

In the following we want to investigate how ψ(x) falls as we move away from the source-point
x0 = 0. Hence we define the distance of a point x to the origin on a d-dimensional lattice with
periodic boundary conditions,

x :=

 d∑
µ=1

min (xµ, Nµ − xµ)2

1/2

. (6.3)

Next, we define a function that gives us the upper bound to the contributions from ψ(x) as a
function of the distance r to the source

f(r) = max
x,α0,a0

{‖ψ(x)‖ | x = r} (6.4)

where ‖·‖ is the usual vector norm over the internal color and Dirac structures of ψ(x). Then
we can analyze the expectation value 〈f(r)〉, which serves as a measure for the violation of
locality.
We adopt a subset of 59 configurations of the same dynamical configurations as in the

foregoing part of this thesis and we apply the CI operator according to (6.1) with the same
parameters as before. First, we plot Eq. (6.4) for the original (untruncated) CI Dirac operator in
Fig. 6.1, which trivially shows its ultra locality. Note that the most distant nonzero contribution
lies at

√
5, which stems from paths of length two in the µ-direction and length one in the

ν-direction, ν 6= µ.
Subsequently, we study (6.4) for the low-mode truncated Dirac operator D5, i.e., we consider

columns of the truncated operator

ψ(x)[x0,α0,a0]
red(k) =

∑
y

D5(x,y)η(y)[x0,α0,a0] −
k∑
i=0

µivi(x)
∑
y

vi(y)†η(y)[x0,α0,a0] (6.5)

where the µi are the eigenvalues of D5 and vi the corresponding eigenvectors. Therefrom we
calculate 〈f(r)〉 for truncation steps in powers of 2 from k = 2, . . . ,128, see Fig. 6.2. First, we
observe that the deviation from the nonzero contributions of the full operator are of the order
of 10−5, as can be seen from the inner plot of the figure, and thus are very small. Moreover,
the truncated Dirac operator collects some nonlocal contributions of similar order, 10−8 − 10−5,



6.1 Locality properties of the truncated CI Dirac operator 109

 0.001

 0.01

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5  3

<
 f(

r)
 >

r/a

full

Figure 6.1: The expectation value 〈f(r)〉 for the full (untruncated) CI Dirac operator.

from distant points on the lattice. These contributions show, for k ≥ 32, an exponential decay
as function of the distance.

The continuum limit, however, is more subtle in this case: as we move towards smaller lattice
spacings at constant volume, the number of eigenvalues increases with the number of lattice
points |Λ| = N3

sNt. Hence, if we want to keep the eigenmode cutoff constant in physical units,
the number of eigenmodes that we have to include grows with a−4, due to the volume scaling,
but decreases only linearly with the energy scale a. Consequently, the number of eigenmodes
we have to include in order to keep the physical cutoff constant, grows with a−3 and the
nonzero contributions to 〈f(r)〉 grow at least linearly with the number of eigenmodes k. If the
exponential decay we observe in Fig. 6.2 persists for higher k, it would account for the a−3

dependence of the number of modes but in order to draw concrete conclusions a more detailed
numerical analysis would be advisable.

Nevertheless, this investigation points out that for our specific setup at finite lattice spacing
the nonlocal contributions are very small and mostly do not affect our results.
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Figure 6.2: The expectation value 〈f(r)〉 for the truncated CI Dirac operator. Small nonlocal
contributions are present.

6.2 The sea quark sector

Throughout this work we left the two flavors of dynamical fermions of the gauge field configu-
rations untouched and only low-mode truncated the valence quark sector. Here we elaborate
how the sea quark sector can in principle be low-mode truncated a posteriori via a reweighting
procedure of the configurations.
We recall from Sec. 1.1.3 that we calculate observables O on the lattice via

〈O [U ]〉 =
∫
DU e−SG[U ] det [Du] det [Dd]O [U ]∫
DU e−SG[U ] det [Du] det [Dd]

. (6.6)

In the latter expression the fermionic degrees of freedom have been integrated out and conse-
quently the fermion determinant of the quarks arises. In the following we assume the two light
quark flavors to be degenerate, i.e., we can write

det [Du] det [Dd] ≡ ( det [D])2 . (6.7)

The fermion determinant can be written as the product of the Dirac eigenvalues λi:

det [D] =
∏
i∈Λ

λi =
∏
i≤k

λi ·
∏
i>k

λi (6.8)
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where in the second step we have split the product into a low-mode part and a reduced part

det [D]lm(k) =
∏
i≤k

λi , det [D]red(k) =
∏
i>k

λi . (6.9)

Then we can formally include a weight wk, which we define as

wk ≡
(
det [D]lm(k)

)−2
, (6.10)

into (6.6) in order to cancel the low-mode contribution of the fermion determinant

〈O [U ]〉wk =
∫
DU e−SG[U ] ( det [D])2wkO [U ]∫
DU e−SG[U ] ( det [D])2wk

(6.11)

=
∫
DU e−SG[U ]

(
det [D]red(k)

)2
O [U ]∫

DU e−SG[U ]
(
det [D]red(k)

)2 . (6.12)

Consequently, only the reduced part of the fermion determinant remains in the path integral to
represent the sea quarks. In the next step we replace the integration over the gauge fields in
(6.11) with a Monte Carlo integration, which yields

〈O [U ]〉wk ≈
∑
nO [Un]wk [Un]∑

nwk [Un] (6.13)

where the finite number of gauge field configurations Un, n = 1, . . . ,N, have been generated
with the standard weight factor e−SG[U ] ( det [D])2.

To test the practicability of the above described reweighting scheme, we first study the
magnitude and the fluctuations of the weight factor wk defined in (6.10). We use the identical
setup as before and adopt the eigenvalues of D itself (not of D5) to study the expectation value
of wk,

〈wk [U ]〉 = 1
N

∑
n

wk [Un] . (6.14)

The values 〈wk〉 with jackknife error bars for different k are shown in Fig. 6.3 and the standard
deviation over the mean value,

√
Var(wk)
〈wk〉

=

√〈
w2
k

〉
− 〈wk〉2

〈wk〉
, (6.15)

is shown in Fig. 6.4. From the plots we see that the weight factors from the definition (6.10)
are extremely large. To compensate therefor we can bring (6.13) in a form more similar to the
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Figure 6.3: The weight factor 〈wk〉 from the Monte Carlo integration as a function of the trun-
cation level k.

unweighted case by defining the ratio

wk [Un] ≡ wk [Un]∑
nwk [Un] ·N . (6.16)

Therewith we can rewrite (6.13) to obtain

〈O [U ]〉wk ≈
1
N

∑
n

O [Un]wk [Un] , (6.17)

which differs from the unweighted case (1.31) only by the factors wk [Un], which multiply the
observable O [Un] on each configuration that enters into the Monte Carlo integration.

In Fig. 6.5 we show the distribution of the values wk for k = 2, 10, 20, 30 from our set of 161
gauge field configurations. Unfortunately, this shows that for truncation levels k ≥ 20, that is
the level of interest for the restoration of the chiral symmetry (see Chap. 2), the Monte Carlo
sum is highly dominated by very few gauge configurations. Therefore, we would need many
more (uncorrelated) gauge field configurations in order to obtain the same statistics as before.
There is a chance, however, that the distribution of the weight factors is narrower for overlap
fermions due to the strict circular distribution of the eigenvalues of the overlap operator in the
complex plane, opposed to the eigenvalues of the CI that are spread with respect to the circle.
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Figure 6.5: Histograms of the values wk for k = 2 (top left), k = 10 (top right), k = 20 (bottom
left) and k = 30 (bottom right) from a set of 161 gauge field configurations.
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6.3 An alternative trial to artificially restore the chiral symmetry

Here we present another approach of artificially restoring the chiral symmetry that is not based
on Dirac low-mode truncation but on the decomposition of the (interacting) quark propagator
in its Clifford algebra elements.

6.3.1 Motivation

We remind the reader that the (continuum) tree-level quark propagator in momentum space
consists of a Dirac vector and a Dirac scalar part,

S0(p) = (ip/+m)−1 . (6.18)

Assuming the quark propagator retains this general decomposition in the interacting case one
can write it as

S(p) = (ip/A(p) +B(p))−1 . (6.19)

The dynamical breaking of the chiral symmetry, and accordingly the formation of a chiral
condensate, is equivalent to an infrared enhancement of the scalar function B(p). Here we
restore chiral symmetry by partially turning off the interactions of the quark propagator with
the gluon fields, to be precise, we replace the scalar function B(p) by its tree-level form, while
leaving the interactions in A(p) fully intact. Then we construct color-singlet hadron correlators
out of these quark propagators, thus no gauge fixing is necessary here.

6.3.2 Details

Lattice quark propagator in momentum-space

Due to discretization artifacts, the lattice tree-level quark propagator differs from (6.18):

S0(p) = (iak/(p) +B0(p))−1 , (6.20)

where the lattice momenta kµ(pµ) and the tree-level scalar function B0(p) that are functions
of the discrete momenta pµ, are known analytically, see, e.g., Appendix A.1 for the CI Dirac
operator.

The CI Dirac operator includes, by construction, not only Dirac scalar and vector parts but
all 16 elements of the Clifford algebra. Thus our interacting lattice quark propagator has the
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general form

S(p) =

B(p)1+ i
∑
µ

Vµ(p)γµ +
∑
µ

Xµ(p)γ5γµ +
∑
µ,ν<µ

Tµν(p)γµγν + P (p)γ5

−1

(6.21)

where the functions B(p) and Vµ(p) are real, whereas the axial vector Xµ(p), tensor Tµν(p) and
pseudoscalar P (p) contributions are complex.

The method

Here we explain how we can replace B(p) with the tree-level form B0(p) in existing lattice
quark propagators. Note that this would correspond to replacing B(p) with the bare quark
mass m in the continuum.
First, we Fourier transform all four space-time directions of the lattice quark propagator to

momentum space,
Sαβab (x,0) → Sαβab (p) , (6.22)

for all color and Dirac components. The discrete momenta p are defined as

p0 = 2π
aNt

(
n0 + 1

2 −
Nt

2

)
,

pi = 2π
aNs

(
ni + 1− Ns

2

)
.

(6.23)

Next, we define

D2(p) = B2(p) +
∑
µ

V 2
µ (p) +

∑
µ

X2
µ(p) +

∑
µ,ν<µ

T 2
µν(p) + P 2(p) (6.24)

and moreover the dressing functions B(p), Vµ(p), Xµ(p), Tµν(p) and P(p) such that

S(p) = B(p)1− i
∑
µ

Vµ(p)γµ +
∑
µ

Xµ(p)γ5γµ +
∑
µ,ν<µ

Tµν(p)γµγν + P(p)γ5 , (6.25)

which are related to the functions from (6.21) by factors 1/D2(p). The latter dressing functions
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can be extracted from (6.25) as

B(p) = 1
4 tr [S(p)] , (6.26)

Vµ(p) = i

4 tr [γµS(p)] , (6.27)

Xµ(p) = 1
4 tr [γµγ5S(p)] , (6.28)

Tµν(p) = 1
4 tr [γνγµS(p)] , (6.29)

P(p) = 1
4 tr [γ5S(p)] (6.30)

where the trace goes over Dirac space. Note that we carry this procedure out for all color
components of the quark propagator individually. Therefrom we obtain the original dressing
functions of (6.21), when dividing by D2(p) which is defined equivalently to (6.24).
In the last step, we simply replace B(p) by B0(p) and reassemble the quark propagator,

S(p) =
B0(p)1− i

∑
µ Vµ(p)γµ +

∑
µXµ(p)γ5γµ +

∑
µ,ν<µ Tµν(p)γµγν + P (p)γ5

D2(p) . (6.31)

Consistency check

For the purpose of checking the consistency of the whole procedure, we Fast-Fourier-Transform
(FFT) a sample quark propagator and subsequently decompose it according to the above
description, assemble it again without replacing B(p) by B0(p) and perform the inverse FFT.
Agreement of all elements of the quark propagator before and after the decomposition proves
consistency.

Relation to Dirac low-mode truncation

In Fig. 6.6 the functions A(p) =
∑
µ Vµ/kµ and B(p) of (6.21) are shown for the full case and

after having subtracted the lowest 16 and 32 Dirac eigenmodes. Here, the configurations have
been fixed to Landau gauge.
As can be seen from the plot, the influence of Dirac low-mode truncation is much more

severe on A(p) than on B(p). Thus, low-mode truncation removes the chiral condensate in the
renormalization point invariant mass function M(p) = B(p)/A(p) by enhancing A(p) instead of
by suppressing B(p).
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Figure 6.6: The functions A(p) and B(p) for the full case and after having subtracted the low-
est 16 and 32 Dirac eigenmodes.

6.3.3 Results

We tested the method for the π (0−+), a0 (0++), ρ (1−−), a1 (1++) and b1 (1+−) mesons and
the nucleon and Delta baryons. Each with only a single interpolator (Jacobi smeared “narrow”)
using 100 configurations for the mesons and 300 for the baryons.

 0.1

 1

 0  2  4  6  8  10  12  14  16

C
(t

)

t

0-+
0++
1--
1++
1+-

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14

m
ef

f(t
)

t

0-+
0++
1--
1++
1+-

Figure 6.7: Correlator and effective mass plots of the π (0−+), a0 (0++), ρ (1−−), a1 (1++) and
b1 (1+−) mesons after the scalar part B(p) has been replaced with its tree-level form B0(p).

In Fig. 6.7 we show the results for the mesons that we obtain after the scalar part B(p)
has been replaced with its tree-level form B0(p). It is evident that this approximation implies
degeneracy of all mesons under study. The degeneracy of ρ and a1 can be accounted for by the
restoration of the chiral symmetry, whereas the degeneracy of a0 and π signals the restoration
of the U(1)A symmetry, equivalently the degeneracy of ρ and b1. Then the question remains
why the groups ρ, a1, b1, on the one hand and π, a0, on the other hand, are degenerate as well.
One could argue that the pseudoscalar state, the pion, in a chirally symmetric world, has no
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reason to have a different mass to, e.g., the rho meson.
Alternatively we have to consider the possibility that we do not obtain confined states

anymore, but find only freely traveling quarks. The correlators of the baryons under this kind
of truncation, see Fig. 6.8, do not show clean exponential decays at all, which strengthens the
argument that confinement does not survive the replacement of the Dirac scalar part by its
tree-level form. Surprisingly, however, the weak signal of a state in the baryon channels has a
mass much higher than 3/2 times the masses of the mesonic states, which one would expect if
one was confronted with free quarks. Interestingly, though, the correlators of N(+) and ∆(+)
are similar to each other and furthermore the correlators of N(−) and ∆(−).
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Figure 6.8: Correlator and effective mass plots of the nucleon and ∆ of both parities after the
scalar part B(p) has been replaced with its tree-level form B0(p).

In summary, at the current stage, profound conclusions on the effects of replacing the scalar
part of the Dirac operator with its tree-level form cannot be drawn. A future study could profit
from the adoption of exact chirally symmetric fermions that do not obtain an additive mass
renormalization.
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Conclusions

In this thesis, the interrelation between dynamical chiral symmetry breaking (DχSB) and
confinement in QCD has been studied. To this end, we were motivated by the Banks–Casher
relation, which connects the low lying Dirac eigenmodes to DχSB, to remove the chiral
condensate from the valence quark sector by hand. We constructed valence quark propagators
on two-flavor dynamical configurations, which omit a variable-sized part of the lowest Dirac
eigenmodes. Plugging these modified quark propagators into meson and baryon interpolators
enabled us to draw conclusions on the fate of confinement in a world without chiral symmetry
breaking.

7.1 Low-mode truncated quarks

What happens to the valence quarks when we remove the lowest eigenmodes? First of all, it
has to be stressed that, against naive assumptions, this procedure does not crucially violate the
locality of the theory. By construction, removing a part of the eigenspectrum violates locality
to some extent. We have shown in Sec. 6.1, that the nonlocal contributions to the truncated
Dirac operator are of the order of one million times smaller than the local contributions, and
moreover, fall exponentially with the distance at finite lattice spacing. Therefore, the influence
of nonlocal contributions can be neglected. Consequently, we are still confronted with a causal
quantum field theory on the lattice. Nevertheless, the modifications we applied to the quark
propagators clearly render the theory different to conventional lattice QCD. This gives rise to
the question: what exactly is different? What happens to the quarks upon Dirac eigenmode
truncation?

In Chap. 3 we investigated the quark propagator in a gauge fixed setting under Dirac low-mode
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removal, with the goal of finding the effects thereof on the quark wavefunction renormalization
function and on the quark mass function which exhibits the dynamical generation of mass
due to DχSB. The first observation was that removing the lowest Dirac modes causes the
dynamical mass generation to cease, while the value of the bare mass (which is also connected
to the lowest Dirac eigenmodes) is not affected. The truncation level k ≈ 128, at which the
quark mass function appears flat, must coincide with the level of complete removal of the chiral
condensate from the valence quark sector. Not only the mass function is affected by Dirac
low-mode truncation, the quark wavefunction renormalization function has also been found to
be strongly suppressed when subtracting more and more low-modes. Infrared suppression of the
wavefunction renormalization function, which appears as an overall factor of the renormalized
quark propagator, can be interpreted as suppression and eventual extinction of low-momentum
quarks in the spectrum. The latter is in accordance with the observation that the low-momentum
states of quarks are directly connected to low Dirac eigenvalues as we derived explicitly in
Sec. 1.4.4 for the case of free quarks.
In summary, the effects of Dirac low-mode removal on the fundamental fermionic degrees

of freedom of QCD include the following: first, the dynamical mass generation of the quarks
vanishes, signalling the restoration of the chiral symmetry. Secondly, the momentum of the
quarks is increased compared with the full theory.

7.2 The hadron spectrum from low-mode truncated quarks

What does the hadron spectrum from low-mode truncated quarks look like? Most important
is the observation that all hadron states we studied (except for a pion from the pseudoscalar
interpolator) persist in the modified theory. Moreover, the signals of the exponentially decaying
correlator functions became essentially better as compared to the full theory. This amounts to
the fact that the noise in correlators is dominated by the lowest Dirac eigenvalues which enter
inversely in the quark propagators and thus in the hadron interpolators.

The persistence of exponentially decaying states allowed the extraction of effective mass values
from these states. Mass degeneracies of ‘would-be’ chiral partners confirm the restoration of the
dynamically broken chiral symmetry. While we clearly observe the restoration of chiral symmetry,
the splitting between currents that are related via the flavor singlet axial transformation persists,
and we conclude that the U(1)A symmetry, which is not only broken spontaneously but also
explicitly by the anomaly, does not get restored. The axial anomaly is related to the real
eigenmodes of the Dirac operator (Sec. 1.4.1) and our maximum truncation level does not cover
all these real modes (Fig. A.5). Moreover, there are arguments [146, 147, 148] that in high
temperature QCD with two light flavors, when chiral symmetry becomes restored, the effects of
U(1)A violation in two-point functions of quark bilinears remain. However, so the authors of
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the aforementioned studies, for three or more light flavors U(1)A violation cannot be observed
in two-point functions beyond the chiral phase transition.
Interestingly, matching of the masses of most of the chiral partners is found at an earlier

truncation level than suggested by the vanishing of the dynamically generated mass of quarks:
degenerate states of, e.g., the vector and axial vector currents are observed at truncation level
k ≈ 16 while, as discussed above, the chiral condensate decreases with the truncation level
until it disappears completely only at k ≈ 128. This can be explained by considering the
increased momenta of the quarks under Dirac low-mode removal. The early chiral restoration,
as displayed by the degeneracy of states, must be an effective restoration that is a combination
of two underlying phenomena: first, the dynamically generated mass of the quarks has shrunk
to about sixty percent of its original value and second, the momenta of the quarks are increased
such that the effective dynamical mass at that momentum tends towards zero. Overall, the
effects of removing the lowest Dirac modes can be summarized diagrammatically as presented
in Fig. 7.1.

eigenvalue gap

chiral restoration
effective restoration increased p

Figure 7.1: The chiral condensate emerges from the density of the lowest lying Dirac eigen-
modes. On the other hand, these low-modes bear a relation to the momenta of the quarks. As
shown in this work, artificially removing these low-modes has a twofold effect: it restores the chi-
ral symmetry and it increases the average momenta of the quarks within the hadrons. Thereby,
one has to distinguish between the effective chiral restoration due to the increased quark mo-
menta and the actual chiral restoration, i.e., the vanishing of the quark condensate.

7.3 Mass generation in QCD

How is the mass of hadrons containing light quarks generated? It is often believed that
DχSBaccounts for the main bulk of mass in light hadrons such as the rho and the nucleon. We
find, however, that at low truncation levels where the chiral symmetry is (effectively) restored,
the masses of these hadrons does not significantly reduce. Instead, the hadron mass even grows
with higher truncation levels because the energy of the quarks is increased which is a remarkable
consequence of the increasing of the quark momenta with the truncation level.
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7.4 The interrelation between DχSB and confinement

Within this study, confinement survived the artificial restoration of the chiral symmetry. On
the contrary, in lattice QCD thermodynamics, where high temperatures are introduced by a
shortened temporal direction of the lattice causing a low-mode gap to form [149, 150, 151], the
chiral restoration phase transition and the deconfinement phase transition coincide. Clearly, the
difference is that in our work, the lowest Dirac modes have been set to zero by hand, while in
high temperature lattice QCD, the gap forms due to the higher energies of the quarks stemming
from the discretization on a shortened lattice in one direction.
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Appendix

Sects. A.1 and A.2 consist of the original Appendices of Refs. [2, 4] (i.e., Chaps. 3 and 5),
respectively. Ancillary, in Sec. A.3 we show the spectrum of the free Dirac operator and compare
its lowest eigenvalues with the eigenvalues of the interacting operator. In the subsequent sections
we discuss low-mode truncation based on eigenmodes of the Dirac operator D vs. low-mode
truncation based on eigenmodes of the hermitian Dirac operator D5, and we show the pion
correlator on a small lattice built out of the low- and high-modes, where we vary the truncation
level over the whole spectrum (Sec. A.4 and Sec. A.5, respectively).

A.1 Analytical expressions for the tree-level CI Dirac operator

At tree-level, the tensor, axialvector and pseudoscalar terms of Eq. (3.7) vanish identically and
only scalar and vector terms remain [59]. When transformed to momentum space one obtains
the following analytical expressions for the latter two: the scalar part, i.e., the tree-level mass
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function which is plotted in Fig. 3.2 is given by

M
(0)
L (p) = s1 + 48s13

+ (2s2 + 12s8)(cos(p0) + cos(p1) + cos(p2) + cos(p3))

+ (8s3 + 64s11)(cos(p0) cos(p1) + cos(p0) cos(p2)

+ cos(p0) cos(p3) + cos(p1) cos(p2) + cos(p1) cos(p3) + cos(p2) cos(p3))

+ 48s5(cos(p0) cos(p1) cos(p2) + cos(p0) cos(p1) cos(p3)

+ cos(p0) cos(p2) cos(p3) + cos(p1) cos(p2) cos(p3))

+ 8s6(cos(p0) cos(2p1) + cos(p0) cos(2p2)

+ cos(p0) cos(2p3) + cos(p1) cos(2p2) + cos(p1) cos(2p3) + cos(p2) cos(2p3)

+ cos(2p0) cos(p1) + cos(2p0) cos(p2) + cos(2p0) cos(p3) + cos(2p1) cos(p2)

+ cos(2p1) cos(p3) + cos(2p2) cos(p3)) + 384s10 cos(p0) cos(p1) cos(p2) cos(p3)

+m0,

where the relevant coefficients are listed in Table A.1. In the same manner, the analytical
expressions of the lattice momenta kµ(pµ) from Fig. 3.1 read

k0 = 2v1 sin(p0) + 8v2 sin(p0)(cos(p1) + cos(p2) + cos(p3))

+ (32v4 + 16v5) sin(p0)(cos(p1) cos(p2) + cos(p1) cos(p3)

+ cos(p2) cos(p3)),

k1 = 2v1 sin(p1) + 8v2 sin(p1)(cos(p0) + cos(p2) + cos(p3))

+ (32v4 + 16v5) sin(p1)(cos(p0) cos(p2) + cos(p0) cos(p3)

+ cos(p2) cos(p3)),

k2 = 2v1 sin(p2) + 8v2 sin(p2)(cos(p0) + cos(p1) + cos(p3))

+ (32v4 + 16v5) sin(p2)(cos(p0) cos(p1) + cos(p0) cos(p3)

+ cos(p1) cos(p3)),

k3 = 2v1 sin(p3) + 8v2 sin(p3)(cos(p0) + cos(p1) + cos(p2))

+ (32v4 + 16v5) sin(p3)(cos(p0) cos(p1) + cos(p0) cos(p2)

+ cos(p1) cos(p2)).

The wave-function renormalization function is equal to one at tree-level by construction.
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s1 0.1481599252× 101

s2 −0.5218251439× 10−1

s3 −0.1473643847× 10−1

s5 −0.2186103421× 10−2

s6 0.2133989696× 10−2

s8 −0.3997001821× 10−2

s10 −0.4951673735× 10−3

s11 −0.9836500799× 10−3

s13 0.7529838581× 10−2

v1 0.1972229309× 100

v2 0.8252157565× 10−2

v4 0.5113056314× 10−2

v5 0.1736609425× 10−2

m0 −0.077

Table A.1: The relevant DCI coefficients. For a complete description see [59].

A.2 Counting flops

As we discussed in Sec. 5.2.4, the main work of Alg. 5.1 consists of applying the new update
g(x) to the neighboring links of site x, i.e., Step 2 of the algorithm. We will now analyze this
more quantitatively. In Fig. A.1 we show the code snippet of cuLGT for the multiplication of a
SU(3) matrix with a SU(2) subgroup element from the left. Here, the SU(2) subgroup element
is stored as a an object of class Quaternion (Cayley–Klein four parameter representation).

As we can read of from the figure, in the loop over k we encounter four complex multiplications
(six flop each) plus two complex additions (two flop each), thus 28 · 3 = 84 flop for the update
of Uµ(x) and equivalently for Uµ(x− µ̂). Consequently, the number of flop for Step 2, in four
dimensions, sums up to 84 · 2 · 4 = 672 per lattice site and SU(2) subgroup and hence to
672 · 3 = 2016 for SU(3).
As mentioned before, the above part is the same for all gauges and all update types. Only

Step 1 of Alg. 5.1 distinguishes between different gauges and update types. Let us consider for
example an overrelaxation update for Landau gauge. The latter consists of calculating g(x)
according to (5.19) plus a first order approximation of the exponentiation g(x)→ gω(x). In the
cuLGT code, the sum of (5.19) is done on the Quaternion objects. Extracting the four reals of
Quaternion representation of a SU(2) subgroup element of SU(3) requires four flop, see Fig. A.2.
The Quaternion objects are then gathered in an array in shared memory (shA) according to
(5.19). This means four flop (four additions) for each Quaternion. Thus the number of flop
in (5.19) is eight per link variable and in 4D eight link variables are involved, i.e., 64 flop per
lattice site and SU(2) subgroup iteration or 192 for SU(3).
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Subsequently, the overrelaxation update g(x)→ gω(x) is calculated. Counting each operation
in Fig. A.3 as one floating point operation (rsqrt corresponds to two operations), the effective
number of flop for the overrelaxation update is 22 per lattice site and SU(2) subgroup, thus 66
for SU(3).
Summing up, the overrelaxation algorithm in SU(3) for Landau gauge requires

• 192 flop to gather the neighboring links Uµ(x), Uµ(x− µ̂),

• 66 flop for the overrelaxation update,

• 2016 flop to apply the new g(x) to Uµ(x), Uµ(x− µ̂)

and thus in total 2274 flop/site. Note that we do not take the extra Flops for the reconstruction
of the third row of the SU(3) matrices into account.

For the heat bath kernel of the simulated annealing algorithm the number of flops cannot be
calculated correctly because of the non-deterministic loops with random-number-dependent
termination conditions. We counted the flops as if every loop is only run once and each RNG
call is counted as one flop. Both choices are very conservative. Therefore, a comparison of
simulated annealing implementations should be based on pure time measurements.

template<class Type>
void SU3<Type>::leftSubgroupMult( lat_group_dim_t i,

lat_group_dim_t j, Quaternion<Real> *q )
{

for( lat_group_dim_t k = 0; k < 3; k++ )
{

Complex<Real> IK = q->get( 0, 0 ) * get(i,k);
IK += q->get( 0, 1 ) * get(j,k);

Complex<Real> JK = q->get( 1, 0 ) * get(i,k);
JK += q->get(1,1) * get(j,k);

set( i, k , IK );
set( j, k, JK );

}
}

Figure A.1: Multiplication of a SU(3) matrix by a SU(2) subgroup element in Quaternion
representation from the left. The total number of flop is 84 per SU(2) subgroup iteration; see
discussion in the text.
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template<class Type>
Quaternion<Real> SU3<Type>::getSubgroupQuaternion(

lat_group_dim_t iSub, lat_group_dim_t jSub )
{

Quaternion<Real> q;
Complex<Real> temp;
temp = mat.get(iSub,iSub);
q[0] = temp.x;
q[3] = temp.y;
temp = mat.get(jSub,jSub);
q[0] += temp.x;
q[3] -= temp.y;
temp = mat.get(iSub,jSub);
q[2] = temp.x;
q[1] = temp.y;
temp = mat.get(jSub,iSub);
q[2] -= temp.x;
q[1] += temp.y;

return q;
}

Figure A.2: Extracting a SU(2) subgroup element of SU(3) in Quaternion representation.

void OrUpdate::calculateUpdate( volatile Real (&shA)[4*NSB],
short id )

{
Real ai_sq = shA[id+NSB] * shA[id+NSB]

+shA[id+2*NSB] * shA[id+2*NSB]
+shA[id+3*NSB] * shA[id+3*NSB];

Real a0_sq = shA[id] * shA[id];

Real b = (orParameter*a0_sq + ai_sq)/(a0_sq + ai_sq);
Real c = rsqrt( a0_sq + b*b*ai_sq );

shA[id] *= c;
shA[id+NSB] *= b*c;
shA[id+2*NSB] *= b*c;
shA[id+3*NSB] *= b*c;

}

Figure A.3: The overrelaxation update requires 22 flop per lattice site and SU(2) subgroup.
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A.3 Eigenvalues of the free CI Dirac operator and formation of the chiral
condensate

In Sec. 1.4.4 we derived an analytic expression for the eigenvalues of the free Dirac operator:

λ = s(p)± i |k(p)| , (A.1)

where s(p) is the scalar part of the Dirac operator, k(p) is the vector part and p are the discrete
momenta. See Appendix A.1 for the analytic expressions of s(p) and k(p) for the CI Dirac
operator.

Figure A.4: Eigenvalues of the free CI Dirac operator (gray and blue) and the lowest 120 eigen-
values of the interacting operator (red and black).

As discussed in Chap. 3, the lowest ∼ 128 eigenmodes are connected to the dynamical
generation of a mass and therefore to the chiral condensate. In Fig. A.4, the full spectrum
of the free CI Dirac operator is compared to the lowest 120 eigenvalues of the interacting
propagator from one sample configuration. In this figure, the lowest 120 eigenvalues of the free
operator are shown in blue. Note the twofold degeneracy of the eigenvalues λ of Eq. (A.1),
plus the additional degeneracies due to discrete rotational symmetry and parity symmetry on
the lattice, for some of the points. When the interaction with the gluon fields is switched on,
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these eigenvalues transform into the points in red and black. The black points correspond to
the (real) would-be zero modes and the red points account for the near zero eigenvalue density
that, according to the Banks–Casher relation, forms the chiral condensate. The shift of the
eigenvalues towards larger real values, compared to the free case, signals an additive mass
renormalization.

A.4 Eigenvalues of D vs. eigenvalues of D5

For the investigation of the hadron mass spectrum under Dirac eigenmode truncation, presented
in Chapters 2 and 4, we used 161 gauge configurations of size 163 × 32 with a lattice spacing
a = 0.1440(12) fm [59]. These configurations include two degenerate flavors of light fermions
with a resulting pion mass of mπ = 322(5) MeV and were generated with the chirally improved
Dirac operator [45, 46], which is an approximate solution of the Ginsparg–Wilson equation.

Here we compare the properties of D and D5, and to this end elaborate the advantages of D5

over D, for our purposes, which justifies the adoption of D5 in the aforementioned studies. We
used valence quarks which are in mass and Dirac operator type equal to the sea quarks of the
given configurations and we calculated the lowest modes (with respect to magnitude) of D and
D5 using the parallel version of the ARPACK package [61]. The latter is an implementation of
the Arnoldi-method to calculate a part of the spectrum of arbitrary hermitian and non-hermitian
matrices.

(a) D (b) D5

Figure A.5: The 256 lowest (in terms of magnitude) eigenvalues, superimposed from 161 config-
urations.

In Fig. A.5 we show the lowest 256 eigenvalues of D and D5, respectively, superimposed
from all 161 configurations. Note that the eigenvalues of D5 are real but not symmetrically
spread with respect to zero. In Fig. A.6, histograms of the real part of the eigenvalues of D,
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the absolute value of D and the absolute value of D5 are plotted. Moreover, we integrated the
three different histograms of Fig. A.6 to obtain Fig. A.7.
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Figure A.6: Histograms of the lowest 256 eigenvalues.

Figure A.7: Integrals over the histograms.

The question that naturally arose in our study was, whether to use the eigenvalues and
eigenvectors of D or D5 to construct truncated quark propagators and therefrom hadron
correlators. In order to answer this question, we considered the saturation behavior of meson
correlators from the low-modes of D and D5.
Fig. A.8 shows the low-mode contribution to the pion correlator and Fig. A.9 equivalently

the contribution to the rho correlator. As can be seen from these figures, fewer eigenmodes
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Figure A.8: Low-mode contribution to the JPC = 0−+ correlator using interpolators ψγ5ψ
(top) and ψγ4γ5ψ (bottom).

of D5 in comparison to D are needed in order to obtain a similar slope of the correlators and
therefore a similar effective mass of the corresponding particle. On the left hand side plots of
Figs. A.8 and A.9, we use the lowest 64 modes of D but only the lowest 16 modes of D5 and on
the right hand side plots we use 128 vs. 32 low-modes of D and D5, respectively.
Looking again at Fig. A.7, we observe that the different amounts of D and D5 low-modes

correspond to the same cutoff in terms of the real part of the spectrum. In quantitative terms
the latter means that on the left hand side plots of Figs. A.8 and A.9, we allow for all eigenvalues
of D and D5 with a maximum real part of approximately 0.022 (in lattice units), and on the
right hand side plots roughly 0.032.
While in Figs. A.8 and A.9 we show only the contribution of the low-modes to the pion

and rho correlators, in Fig. A.10 and Fig. A.11 we now exclude the lowest modes, i.e., these
correlators are built with truncated quark propagators. For the rho (Fig. A.11) we clearly obtain
a linear region in the logarithmic correlator for medium times, although with slightly different
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Figure A.9: Low-mode contribution to the JPC = 1−− correlator using interpolator ψγiψ.

slopes for D and D5. In contrast, the exponential decay of the pion from the pseudoscalar
interpolator (top row of Fig. A.10) ceases when excluding the lowest eigenmodes of D5, and
even more severe when subtracting eigenmodes of D. This can be attributed to the fact that
the pion, interpolated by ψγ5ψ, is heavily dominated by the low-modes of the Dirac operator
as demonstrated in Fig. A.8.
Another interpolator with the correct quantum numbers of the pion is the temporal part of

the axial vector current ψγ4γ5ψ. We show the low-mode contribution of the correlator using
that interpolator in the bottom row of Fig. A.8, obviously the low-modes are less dominant here.
As a result, the truncated version of the pion using interpolator ψγ4γ5ψ retains its exponential
decay and thus manifests a clear mass plateau (bottom row of Fig. A.10).
In order to answer the question whether the lower spectrum of D or D5 is better suited for

our work, we stress that in all cases, the truncated rho correlator Fig. A.11 and the truncated
pion correlators Fig. A.10, the signal from the correlator that excludes the low-modes of D5 is
much less noisy. Moreover, as we have seen in the above considerations, the real part of the
spectrum plays the crucial role in saturating the correlators. As it is evident from the plot in
Fig. A.7, in the case of the real part of the spectrum of D the cutoff starts to increase very
slowly with the number of modes and suddenly, at the scale of the bare quark mass, it increases
very fast. On the contrary, the derivative of the real part of the spectrum of D5 is much closer
to a constant as a function of the number of eigenmodes. Consequently, we decided to adopt
the eigenspectrum of the hermitian Dirac operator D5 for our study.
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Figure A.10: Truncated JPC = 0−+ correlator using interpolator ψγ5ψ (top) and ψγ4γ5ψ
(bottom).
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Figure A.11: Truncated JPC = 1−− correlator using interpolator ψγiψ.
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A.5 The pion correlator from zero to all Dirac eigenmodes on a small lattice

As a consistency check of our simulation and in order to better understand the convergence
behavior of low/high mode correlators to the full correlators, it would be desirable to have
all eigenvalues and eigenvectors of the Dirac operator on a given gauge field configuration.
Since the cost in computer time and the need of memory are way to high to obtain the whole
eigenspectrum for our lattices of size 163 × 32, we constrained ourselves to an affordable test
case: we have calculated all 6144 eigenvalues of D and D5 on a single quenched (β = 6.0)
configuration of lattice size 43×8 using LAPACK. See Fig. A.12 for the complete eigenspectrum
of D.

Figure A.12: All eigenvalues of the CI Dirac operator from a 43 × 8 lattice.

This allows us to build up the pion correlator mode by mode from zero to all modes. The
latter can on one hand be done by gradually adding low-modes until all modes are included, see
the top row of Fig. A.13 where on the left hand side we show the contributions of the lowest 2 -
6000 eigenmodes of D5 and on the right hand side the contributions from 6000 modes up to
the full case (6144 modes).
On the other hand, we can saturate the pion correlator by starting with the highest modes

and piecewise adding more modes until the lowest mode is included, which is shown in the
bottom row of Fig. A.13. This choice is of course equivalent to subtracting a given number
of low-modes at each step, therefore we use again the notation red(k), which refers to having
excluded the lowest k modes or in other words included the highest 12 |Λ| − k modes.
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Figure A.13: The eigenmode contribution of the hermitian Dirac operator D5 to the pion cor-
relator from a single configuration of size 43 × 8. In the top row the contribution from 2 – 6000
modes (left) and and from 6000 to all 6144 modes (right) is shown. The bottom row shows the
contribution from all modes except the lowest 2 – 6000 modes (left) and the highest 144 – 2
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