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Zusammenfassung?’

Die Quantenchromodynamik (QCD) [1, 2] ist die Theorie der starken Wechselwirkung, welche
fir das Hadronenspektrum und somit fiir die ganze Materie in unserer Alltag, verantwortlich
ist. Die QCD, als Quantenfeldtheorie und Teil des Standardmodells der Elementarteilchen,
beschreibt die Wechselwirkung zwischen farbgeladenen Quarks und Gluonen. Hadronen wie
z.B. das Proton, das Neutron oder das Pion, um die bekanntesten zu nennen, bestehen aus
zwei bzw. drei Quarks, welche durch die Gluonen zusammengehalten werden, um dann ein
farbneutrales Teilchen zu bilden. In den 1970er Jahren haben grofie Beschleunigerexperimente
die Existenz der Quarks bestétigt, nichts desto trotz wurden einzelne Quarks nie in der Natur
beobachtet. Man sagt, Quarks sind innerhalb farbneutraler Zusammensetzungen eingeschlossen,
dieses Phianomen ist als Quark Confinement bekannt.

Bei darauffolgenden Experimenten entdeckte man, dass Quarks bei sehr kleinen Absténden —
oder dquivalent sehr groflen Energien — die starke Wechselwirkung nicht zu spiiren scheinen,
diese Eigenschaft wurde bekannt unter dem Namen Asymptotische Freiheit und ermdoglichte
den Physikern die Storungstheorie, welche Ergebnisse mit beeindruckender Genauigkeit in der
Quantenelektrodynamik hervorbrachte, auf die QCD anzuwenden, innerhalb des Bereichs in
dem die Kopplung als schwach angesehen werden kann. Jedoch finden Phénomene wie die
spontane Brechung der chiralen Symmetrie, welche fiir Teilchen aus leichten Quarks den grofiten
Massenbeitrag liefert, in der Niedrigimpulsregion statt und sind somit der Stérungstheorie nicht
zuginglich.

Im Jahre 1974 stellte Wilson [3] ein Formulierung von Eichtheorien auf einem diskreten
Raumzeitgitter vor. Das Gitter, welches einen kleinstméglichen Abstand — einen gréftmoglichen
Impuls — einfiihrt, dient als Regulator fiir Quantenfeldtheorien. Heute ist das Gitter der
vielversprechendste ab initio Ansatz um die Geheimnisse der Natur, welche der Dynamik von
Quantenfeldtheorien unterliegen, mit der Hilfe von Supercomputern, zu liiften. QCD ist eine

renormierbare Theorie und somit werden physikalische Observablen unabhéngig vom cutoff,

1 Dieses Kapitel entspricht weitestgehend einer Ubersetzung der Einleitung auf deutsch.
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also im Fall des Gitters der Gitterkonstanten, wenn man sie gegen Null gehen ldsst und somit
der Kontinuumslimes vollzogen wird. Die Gitterformulierung der QCD ist von Natur aus
nicht-perturbativ und somit gut geeignet um die volle Dynamik von Quarks und Gluonen zu
studieren.

Die bekanntesten Eichungen in Eichtheorien sind die Landau- und die Coulomb-Eichung.
Waéhrend die Landau-Eichung frei ersichtlich kovariant ist und somit rdumliche und zeitliche
Freiheitsgrade gleichermaflen behandelt, ist die Coulomb-Eichung auf natiirliche Weise mit
physikalischen Freiheitsgraden verbunden. Desweiteren bietet das Gribov-Zwanziger Szenario
[4, 5, 6], ein gefélliges Bild des Confinements. Die Nichtkovarianz der Coulomb-Eichung macht
technischen Fortschritt schwierig, dennoch haben in den letzten Jahren verschiedene Ansétze
zu achtungsvollem Vorsprung gefiihrt. Darunter sind ein Hamilton-basierte Ansatz, ein Dyson-
Schwinger Funktionalintegralansatz und das Gitter zu nennen, siehe z.B. [7, 8, 9, 10, 11].

In dieser Arbeit untersuchen wir den Quarkpropagator, welcher die fermionische Zweipunkts-
funktion der QCD ist, in Coulomb-Eichung auf dem Gitter. Im Laufe der Studie erforschen wir
die Struktur des wechselwirkenden Propagators und dabei gewinnen wir wertvolle Einblicke
in die Dynamik der QCD. Im ersten Anlauf analysieren wir den Quarkpropagator, mittels
zweier Formulierungen von Fermionen auf dem Gitter, in sogenannter quenched N&herung. Das
bedeutet, wir vernachlissigen Anfangs die Effekte von Seequarks. Darauffolgend vollziehen wir
schlieBlich eine Studie welche dynamische Quarks beinhaltet. Desweiteren priifen und beweisen
wir Renormierbarkeit fiir den (statischen) Quarkpropagator in Coulomb-Eichung auf dem Gitter.

Unseres Wissens nach, wurden bisher keine Studien des Quarkpropagators in Coulomb-Eichung
auf dem Gitter vollzogen, wiahrend die Literatur reich an Arbeiten iiber den Gitterquarkpropa-
gator in Landau-Eichung ist, siehe z.B. [12, 13, 14, 15, 16, 17, 18].
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) [1, 2] is the theory of the strong interaction which is
responsible for the hadron spectrum and therefore for all matter in our everyday life. QCD,
being a quantum field theory and part of the standard model of elementary particles, describes
the interactions between color-charged quarks and gluons. Hadrons, e.g., protons, neutrons and
the pion, to name the most famous, are made up of two or three quarks, respectively, “glued”
together by gluons to build a color-neutral particle. In the 1970s, large accelerator experiments
confirmed the existence of the quarks, nevertheless, single quarks have never been observed in
nature. Quarks are said to be confined within color-neutral composites.

Subsequent experiments found that at very small distances — or equivalently high momenta —
the quarks seem not to be affected by the strong nuclear force. This phenomenon is known as
asymptotic freedom and it enabled physicists to apply perturbation theory, which engendered
calculations with astonishing precision in Quantum Electrodynamics (QED), to QCD, for the
regime of weak coupling. Phenomena like spontaneous chiral symmetry breaking, though,
which is responsible for the mass of light-quark composites, like the nucleons, occur in the
low-momentum regime and therefore their exploration can not be tackled within perturbation
theory.

In 1974, Wilson [3] proposed a formulation of gauge theories on a discrete space-time lattice.
The lattice, introducing a smallest possible length or equivalently a largest momentum, serves as
a regulator for quantum field theories. Today, lattice gauge theory is the most promising ab initio
approach to reveal the secrets of nature, underlying the dynamics of quantum field theories,
by numerics on large scale computers. QCD is a renormalizable theory and thus physical
observables become independent of the cutoff once it is removed, i.e., once the continuum limit

is taken on the lattice. Since the lattice formulation of QCD is inherently non-perturbative, it
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is well suited for studying the full dynamics of quarks and gluons.

The most popular gauges of gauge theories are the Landau and the Coulomb gauge. Whereas
the Landau gauge is manifestly covariant and consequently treats spatial and temporal degrees
of freedom uniformly, the Coulomb gauge framework is naturally connected to physical degrees
of freedom and the Gribov-Zwanziger scenario [4, 5, 6], features an appealing picture for
confinement. Non-covariance of Coulomb gauge makes technical progress difficult, nevertheless,
in the recent years various approaches enjoyed significant advance. Among them are to name
a Hamilton-based approach, a Dyson-Schwinger based functional integral approach and the
lattice, see, e.g., [7, 8,9, 10, 11].

In this work, we examine the quark propagator, which is the fermionic two-point function of
QCD, in Coulomb gauge on the lattice. Throughout this study we explore the structure of the
interacting propagator and thereby we will gain valuable insights in the dynamics of QCD. As
a first attempt, we explore the quark propagator using two kinds of fermion lattice formulations
in quenched approximation, i.e., we initially neglect the effects of sea quarks. Thereafter, we
eventually conduct a study including dynamical quarks. Furthermore, we will test and prove
renormalizability of the (static) Coulomb gauge lattice quark propagator.

As to our knowledge, no previous studies of the lattice quark propagator in Coulomb gauge
have been performed, whereas the literature contains extensive studies of the propagator in
Landau gauge, see, e.g., [12, 13, 14, 15, 16, 17, 18|.

The remainder of this work is as follows: in Chap. 2, we will introduce the path integral
approach to quantization, based on ordinary quantum mechanics and we will reveal the
connection of the path integral to ground state expectation values. In Chap. 3, we will consider
the quantum mechanical harmonic oscillator as a scalar 0+1 dimensional quantum field theory
and subsequently formulate the latter on a discrete temporal lattice. We will generalize this
picture to relativistic bosonic fields, introduce fermions and gauge fields on the lattice and
finally end up with a complete formulation of lattice QCD. During this journey, our focus will
always lie on the two-point function of the theory under discussion. In Chap. 4, we will discuss
the computation of the Coulomb gauge quark propagator on a discrete space-time lattice and
its decomposition into spatial, temporal and massive components, in detail. In Chap. 5, we will
present our various findings for the Coulomb gauge quark propagator and in Chap. 6, we will

summarize and give an outlook on possible further studies.



Chapter 2

Path Integrals and Green’s Functions

Within this preluding chapter we will introduce basic concepts from quantum mechanics to
quantum field theory in order to collect the preliminaries needed for subsequent introduction of
lattice field theory. This chapter is mainly leant to [19, 20, 21].

2.1 The path integral approach to quantum mechanics

In this section we derive the path integral representation of the propagator in quantum
mechanics and show equality of the propagator, the transition amplitude and Green’s function of
Schrodinger’s equation. After performing these steps in great detail for conventional Minkowski
space, we state the corresponding results for Euclidean space where the time parameter is

purely imaginary.

2.1.1 Real time formulation

In ordinary quantum mechanics, time evolution is described by Schrédinger’s equation,
ihoy |a,t) = H |at) , (2.1)

where the underlying system is fully characterized by a time-dependent Schrodinger state ket
|a,t) which is an element of a complex Hilbert space H. The dimensionality of H is determined
by the nature of the physical problem under consideration. The operator H : H — H is the

Hamiltonian of the system. Suppose the latter is time-independent: then time evolution is
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equivalently given by the following time-evolution operator,
Ulttg) = e HEt0)/h 4 > ¢ (2.2)
which evolves a given state |a,tg) = |a) at time ¢y towards later times ¢:
lat) = Ult,to) |) . (2.3)

In every Hilbert space, a scalar product is defined by («|3) whereby the state bra (o] € H*
is an element of the dual space of H. Time evolution of a bra state is accomplished by the

hermitian conjugate of U(t,tg),
(o U (t.t0) = (ont]. (2.4)

Using the coordinate basis {(z|} in H*, the scalar product for a given state ket, (x|a,t), can
be interpreted as a scalar valued function of & which is known as wave function ¢ (x,t) = (x|a,t).
One should acknowledge the fact that eigenstates of operators are time-independent in the

Schrédinger picture.? Hence we can formally write (2.3) in coordinate space as

Uadt) = [ &% (@l Ud) o) v(a't)

(2.5)
- / &2 K (a,ts 2 )b (@ )
where we used the completeness relation [ d3z’ |2') (x| = 1. From the above equation it can be
seen that the transition amplitude (x| U(t,t') |2') acts as a propagator K (x,t; 2’,t') for the wave
function ¢ (2’,t’), i.e., once an initial wave function ¢ (x’,t’) is given, time evolution is completely
determined by the propagator K (x,t; 2’ ') — supposed that the system is left undisturbed.
Since 1 (x,t) is subject to Schrodinger’s time-dependent wave equation, it is obvious from
(2.5) that K(a,t; 2’ ,t’") also fulfills it in the variables @,t. Furthermore, an apparent property of
the transition amplitude is lim; ¢ (x| U(t,t") |&’) = é(x — &) and consequently the propagator

equals the wave equation’s Green’s function up to a factor i/h,
h2
<_2A +V(x) - ih8t> K(zt;x' t') = —ihd(x — 2')o(t — t'), (2.6)
m

with the causality boundary condition K(z,t;x’,t') = 0 for t < t’. Note that in (2.6) the

1 U is an unitary operator, U'U = 1, as long as H is hermitian.
2 Since we assume that H is time-independent.
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potential V() is a function of the coordinate operator & and —ihV is the coordinate space
representation of the momentum operator p, thus p? = —h2A.

To simplify the following analysis, we restrict our setup to one spatial dimension, hence we
consider a point particle of mass m moving along the x-axis under the influence of a potential

V(z). The corresponding Hamiltonian reads

H = ﬁ + V(x). (2.7)

- 2m

Making use of the time-evolution operator’s composition property, U (t,t") = U(t,t)U(¢'t"),

t >t >t", and, again, of the completeness relation in coordinate space, we can write
(x| Ut |2") = /dx' (| U |2 (&' | U@ ") |2") . (2.8)

Obviously, we can repeat the aforementioned decomposition of the propagator an arbitrary
number of times; we divide the time interval [¢',¢] into N pieces of length a = (t —t') /N resulting
in

N-1
<.%'N‘U(tN,t()) ‘:C()> = /dl‘l /d(I}Q .../d.’L‘N_l H <xi+1’U(ti+1,ti) ’Q?Z> (2.9)
=0

In the last equation we have set 2’ = xg,t’ =ty and x = zn,t = ty for the sake of a uniform
notation. We want to further investigate a single factor of the right-hand side (r.h.s.) of (2.9).

Therefore we will need the momentum operator’s eigenfunctions, the plane waves,

1 sond !
— P/ (2.10)

<l’,|p,> = V2rh

and moreover the Baker-Campbell-Hausdorff formula (see ,e.g., [19]) to obtain an approximation

of the exponential of a sum of functions of the non-commuting operators x and p for small a,

e—iaH/h ~ e—iapQ/(2m7i) e—iaV(ﬂﬁ)/h . (2.11)

Therewith we can approximate each of the products of (2.9) according to

(Tip1| U(tiyr,ti) [75) = /dp’ (i1 o—iap?/2mh ) (| e~V @/ )
~ 1/dp, efia[p/2,2mp’(:ci+1—xi)/a]/2mhe—iaV($i)/h
2mh

1

~ 771 /dp/ efia[p’fm(aciﬂ7aci)/a]2/2mheim(mi+1f:ri)2/2ha efiaV(xi)/h.
27

(2.12)

This integral is known as Fresnel integral and the integrand herein is not convergent: to ensure



6 Chapter 2 Path Integrals and Green's Functions

convergence we slightly shift the time-step size into the complex plane, a — a — i€, so that the
exponent gets suppressed for large p’ values. After the integration we let ¢ — 0. Then the value
of above Gaussian integral is given by \/27hm/ia and thus

m 27202V -V (2
(xi+1] U(ti_:,_l,ti) ’$Z> ~ 5Tia ela[m($z+1 )/ (2a?)=V ( z)]/h_ (2.13)

Inserting this back into the expression for the propagator, (2.9), yields

m > N/2
2mhia

N—1 1 — 1)
X exp (zZ S lm@;ﬂ) - V(:c,-)D . (2.14)

1=0

(x| U(tato) [20) %/da:l /de .../de,l <

We are now ready to formally take the continuum time limit, i.e., letting a — 0 and N — oo,

in order to achieve a path integral (PI) representation for the transition amplitude:

(N Ultnto) |z0) = / Dla] &St/ (2.15)

In the last expression, we have formally defined the integration measure as

m \N/2
/D[x] = Cllli% (277711'@) /dxl /dacg .../d:cN_l, (2.16)

moreover, we have introduced the action

tN tn

Sl = [ dtLzd]= /

to to

dt [7;3:2 - V(x)} . (2.17)

L [z,%] is the Lagrangian of the system. It has to be pointed out that in (2.15) x is not an
operator anymore but simply a number which depends on the time index. When formally
taking the continuum time limit,  becomes a function of ¢ and hence the Lagrangian, as well
as the action, are functionals of classical trajectories z(t). In (2.15), the points z¢p = x(to)
and xy = z(ty) are held fixed and we integrate over all paths between these two points while
every path is weighted by a factor exp (¢S [z,%] /h). Before we further discuss the path integral

representation, let us switch to the Euclidean time formulation.

2.1.2 Imaginary time formulation

The weighting factor of (2.15) consists of a highly oscillating phase which is clearly inappropriate

for numerical calculations. In order to remove this phase factor we perform a so called Wick
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rotation, that is we replace t — —i7. As a consequence, the relative minus sign between temporal
and spatial components in the Minkowski metric g, vanishes. Hence the resulting metric is
given by the Kronecker delta, d,,, what makes the common reference to this formulation as
Euclidean apparent. For a discussion of the equivalence of this formulation to the conventional
Minkowskian formulation see ,e.g., [22]. In addition to continuing to imaginary times, we will
from now on and for the rest of this work set i = 1.

In this new setup the time-evolution operator reads
U(r,r) = e H=7) (2.18)

The connection of the propagator to the PI that we just derived in the real time formulation
can be revealed in the same way straightforwardly in imaginary time. In particular, it is not
necessary to shift a into the complex plane to solve the integral, as we did before. We simply
state here the result [20],

(| U (a0 |70) = / Dla] e~ Selot] (2.19)

where the integration measure is defined as in (2.16) but without the i in the denominator and

the Euclidean action is given by

TN

Sp i) = /TO dt Bl 2+ V(x)] . (2.20)

Mind the relative minus sign in front of the potential term in contradistinction to the real time
case. In this formulation the interpretation of the PI is very clear: we integrate over all paths
connecting the initial point zg with the final point x5, whereas paths with a corresponding
action close to the minimum — thus close to the classical solution — give the main contribution
to the integral. Paths with a relatively large action become exponentially suppressed. This
reveals a connection between quantum mechanics and the principle of least action from classical

mechanics.

2.2 Vacuum expectation values via path integrals

In this section we will introduce basic concepts of quantum field theories, whereby our focus
again lies on the connection between Green’s functions and the path integral representation,
since it is this connection from which the whole idea of lattice field theories stems from. With
regard to what we worked out in the previous section, we will continue to consider ordinary

quantum mechanics, although we interpret the latter as a 04+1 dimensional field theory. This
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interpretation originates from the fact that a general (real) classic field ¢ is a function
N2 xT — D, (xt)— o(x,t), (2.21)

with 2 C R3 and T, D C R, opposed to a classical (one dimensional) trajectory of a point-
particle
x:T— D, tw— z(t). (2.22)

Consequently, we can generalize our path integral studies for quantum mechanics later easily to
(bosonic) quantum field theories by introducing additional spatial degrees of freedom.
We continue to work in the Euclidean formulation, nevertheless from now on we will write
t instead of 7. Moreover, we will make use of the Heisenberg picture, where the connection
between the time-independent Schrodinger operators A and the time-dependent Heisenberg
operators A(t) is given by
A(t) = eflt AeHE, (2.23)

Also note that eigenstates of operators evolve in the opposite direction of time in the Heisenberg

picture, which can be attributed to following eigenvalue equation,
AU (t,t0) |a') = UT(t,to)Ald') = d'UT(t,t0) |a') . (2.24)

Due to the complexity of quantum field theories one becomes content with studying only
a few concrete processes of interactions [21]; in this fashion one does not seek the propagator
of the whole system, as for simple quantum mechanical problems, instead one is interested in

vacuum expectation values of time ordered products of field operators of the form
(O| T (z(t1) z(t2) ... z(t;)) |0) . (2.25)

The time-ordering operator 17" orders the field operators according to descending time from
left to right. These vacuum expectation values are often referred to as Green’s functions as
well, we will uncover the reason therefore below. Let us assume for forthcoming analysis that

time-ordering is already accomplished, i.e., we consider
0l x(t1) z(t2) ... x(t) |0), t1 >te>...>1. (2.26)

Our aim is to construct a PI representation of (2.26) which we can evaluate numerically on a

temporal lattice. Our starting point will be

(| z(tr) ... xt) |2 ) = (x]e T a(ty) ... x(t;) ™ |2) (2.27)
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which, as we will see, is connected to (2.26) in the limit of very large negative and positive
values for ¢’ and t, respectively. In order to show the aforementioned connection, we insert a

complete set of energy eigenstates to the left of exp (—Ht') and the right of exp (Ht),
S (@ln) (nl e t a(ty) .. x(t) e [m) (mla)
=Y eal@) e B (n]a(ty) .. 2(tr) [m) P o (o) (2.28)

t— — —t *
e o) o () () 0] o) - x(8) [0)
Where (x|n) = ¢, () are the energy eigenfunctions. The last step is to be understood as letting
t' and t take very large negative and positive values, so that under the assumption of a energy
gap between the ground state and the first excited state, only the ground state survives. When
we additionally write the left-hand side (1.h.s.) of (2.27), with the operators z(t;) replaced by

the identity operator, into the denominator, we obtain

(mt|z(t1) ... z(t) |2/ ) 1—oo
(x,t|z’t") #'——00

(0 z(t1) ... z(t;) |0) . (2.29)

Hence, in order to construct a PI representation of (2.26), we now focus on the Lh.s. of (2.29).

The denominator’s PI representation is already known from the previous section, since
(@t ') = (2] e T [of) = (@| Ut |2). (2.30)

Concerning the numerator, we first extract the time-evolution operators from the coordinate

space eigenstates and operators,

(.t z(tr)...x(t) |2t

— <$| e—H(t—t1) l’e_H(tl_tz) o e_H(tl—l_tl) xe—H(tl—t/) |ZL',>

-1 (2.31)
= /dxl .. ./dxgl <$‘ e_H(t_tl) ’331) H <.%'2i_1’ xr ‘.%'21> <x21‘ e_H(ti_ti+l) ’$2i+1>

i=1

X (w1 | @ [way) (ot e H ) [

In the second step we inserted complete sets of coordinate operator eigenstates between each
time-evolution operator and coordinate operator. It remains to extract the eigenvalues of the

coordinate operator according to (z;| x |zi;1) = ;0; ;41 and relabeling of the indices to obtain

-1
/ dzy ... / day (] e 0 ) TT s (i € H G0 [ 1) ay (| e O oy (2.32)
=1
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Lastly, we further decompose the factors (x;|exp (—H (t; — ti+1)) |xit1), N-times, to be con-
sistent with (2.9) and to achieve correspondence with the PI representation of the previous
section. We therefore attain, after taking the continuum time limit, a formal PI representation
of the Lh.s. of (2.29),

(xt|z(t1) ... z(ty) |2/, t) _ [Dlz] z(t1) . .. x(t;) e Seld]
(wt]a t) [ Dla] e—Sele:dl :

(2.33)

With regard to the [-point functions (2.26), we take the indicated limit to obtain the formal

expression
x| x LT e—SElz.d]
0l z(t1)...2z(t) |0y = [2] ]f(lt)l[zf] eézl[i,@ . (2.34)

It has to be stressed that in (2.34) the time integration in the action goes over all values from
—00 to 0o, in contradistinction to the PI representation of the transition amplitude from the
previous chapter. Thus, we integrate over all paths starting and ending at arbitrary points at
time —oo and oo, respectively.

The r.h.s. of (2.34) is reminiscent of a statistical ensemble average with a Boltzmann
distribution given by exp (—Sg [z,%]). Therefore, we refer to the denominator of the r.h.s. of
(2.34) as partition function Z and to the L.h.s.,

(z(ty)...x(t)) = ;/D[x] z(ty) ... x(t) e el (2.35)

as correlation function, to underline the similarity to a statistical system. It is this similarity to
correlation functions which will be very essential for the remainder of this work; it is due to
this correspondence that we can use numerical methods well known from statistical mechanics

to calculate n-point functions in quantum field theories.



Chapter 3

Lattice Field Theory

This chapter is exclusively dedicated to the discretization of fields. We will start by considering
the quantum mechanical harmonic oscillator (HO) as a — rather simple — field theory, afterwards
we generalize the attained results to relativistic scalar fields. Subsequently we discuss fermionic
fields on the lattice and the associated problem of fermion doubling in detail. In conclusion
we present the link variables as lattice definition of gauge fields and finally summarize by

formulating QCD on the lattice.

3.1 Harmonic oscillator as a 041 dimensional lattice field theory

As an instructive example on how to calculate n-point functions via the PI approach numerically,

we consider the well-known quantum mechanical HO. The Hamiltonian is given by

0 mwa?

H=-—
2m+ 2

(3.1)

Later on we will calculate the quark propagator, which is the fermionic two-point function in

SU(3) Yang-Mills theory. The analog in our setting would be the two-point function

(@(0)at)) = [ Dlal () oty e Selosl, 120, (3:2)

11
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in accordance with (2.35). In this specific example, the Euclidean action is given by

00 -2 2,..2
Sg [2,d] = / dt <m; + m“;m ) (3.3a)
00 . 2 2
:/ dt (—m;”x + m“f > (3.3b)

where we integrated by parts and used the fact that x(t) can be chosen to be zero at £oo to
obtain (3.3b).

How can the vacuum expectation value (3.2) be interpreted? To discuss that, consider the
coordinate operator in terms of creation and annihilation operators, z = /1/(2mw) (a + aT),

and use the fact that the annihilation operator destroys the vacuum, a |0) = 0, in this way,

(x(t) 2(t)) :ﬁ (01" (a+at) e ) (at-al) e 1 |0)

=— P (0] aU (£, )al |0) (3.4)

2mw

_ LB (1 pt) )

2mw

As a result we can see that the two-point function is proportional to the transition amplitude
(1| U(t,t') 1), i.e., to the probability that an excited state |1) at time ¢’ evolves towards a later
time ¢ while remaining in the same state |1).

In the following, we will take a step backwards in the derivation of the PI. Since our goal is
to calculate the two-point function (3.2) numerically, we now undo the continuum time limit

which we performed in (2.33) and thus introduce a temporal lattice
At:{n|n:O,...,Nt—1} (35)

and replace ¢t = na, where a is the step of the lattice A;. Then, the “fields” z(¢t) are to be
evaluated on the lattice sites x(nia) = . For convenience, we will adopt periodical boundary
conditions xny = xzg. We remark that N; has to be chosen large enough so that contributions
from higher energy states in comparison to the vacuum are sufficiently suppressed.

The discrete version of the action (3.3b) reads

Ni—1
i (_mxn |:.’,Cn+1 4+ Tpo1 — Q.Z‘n} n mw%%) ‘ (3.6)

Sglr]=a Z
= 2 a?

We have chosen to approximate the derivative in (3.6) with the centered finite difference scheme

which has errors O(a®). We equivalently could have chosen a more accurate approximation
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by, for example, also using next to nearest neighbor points, for details see ,e.g., [23]. In this
sense is S [z] not unique. The overall factor @ in (3.6) has to be included so that the action
is dimensionless in units of A (cf. Appendix A.1). We next want to express the action (3.6)
in terms of dimensionless variables only. When we denote the dimension of length with ¢, the

dimensions of the variables in the action are
[a)=¢, m]=¢" [z]=¢ [w=¢" (3.7)

Consequently, we scale all variables according to their dimension with ¢ and thus define the
dimensionless quantities

m = ma, 5;:§7 O = wa. (3.8)
a

Then the action can be written in terms of these dimensionless variables as
1 Ne=1
Splal = -5 Y i, (aznﬂ F Ry — 28y — @%n) (3.9)

n=0

and on that account the discrete two-point function is given by
A 1 O
(T &) = A DI &y Ty e "EF n>m, (3.10)

with z,, = xz(nya) and the integration measure defined by

m Ntz+1 Ne—1
/Di‘ = () / dz; . (3.11)
2T 5

We want to highlight that (3.10) is well defined in contrast to the formal PI representation in

7=

the continuum. On every lattice site n, Z, has to be integrated from —oco towards co, whereas
the main contributions to the integral come from values of #,, for which the discrete action (3.9)
is close to its minimum. The weighting factor exp(—Sg [£]) suppresses contributions for very
large positive and negative values of #,, due to the quadratic appearance of Z, in Sg (3.9), this
renders the integral finite.

Within this simple example it is straightforward to calculate the two-point function (3.10)

analytically, therefore we define the matrix
Kij =-m ((51'7]‘—1 + 5@',]‘-1—1 - 251‘]‘ — @2(51']') . (3.12)

Note that Kj; is positive definite and thence invertible. Using this matrix we can write the
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discrete action in Gaussian form
1 Net
i,j=0
and thus we can solve the multidimensional Gaussian integral, now appearing in the two-point
function, to acquire
I Di g i exp (—3 iy 2K
(T &) = - . . ) =K, (3.14)
[ Dz exp (75 > :BiKijﬂfj)

Here we attained a very important result: equation (3.14) states that the HO two-point function
is simply given by the inverse of the kernel appearing in the action. Put another way, the

two-point function is the Green’s function of the operator Ky,

> Kt (1 &m) = Snm. (3.15)
l
This is the origin why one usually refers to the vacuum expectation values as Green’s n-point
functions. It has to be perceived that the above Green’s functions are not related to the Green
function to Schrédinger’s equation which we encountered in Chap. 2, that equals the propagator
of wave mechanics.

In order to invert the matrix K, we introduce the momentum space delta function'

Tdp .
Onm = / o e, 3.16
nm o € ( )
Therewith we have
™ dp - - "
Knm =m 7]) (- e? —e™% +2 + @2) elp(nfm)
_x 27
T dp - (3.17)
= ﬁl/ — (—2 cosp+ 2+ @2> eih(n—m)
_x 27
and using 1 — cosz = 2sin?z/2 this yields
T dp .
Ko = %K (p) Pt (3.18)

1 Note that here and in the following, the above integral is meant symbolically: what we actually mean is

T dp 1 iously dis :
L Zﬁe(—w,rr] 7, since the momenta are obviously discrete as well.
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In the last equation, we defined

K (p) = 41 sin®

N3

. (3.19)

Then, the two-point function is easily found to be

T dﬁ eiﬁ(n—m)
Tn Tm) = — . 3.20
(&n ) /,7, 27 4 sin? #/2 + Mm@ (3:20)

Although we just calculated the two-point function of the HO analytically, we now briefly
present how one can calculate Green’s n-point functions numerically, because we will need it
later when we discuss more involved field theories where an analytic solution cannot be found.
Therefore, we take a closer look at (3.10) again. Since, in more general lattice field theories,
one has to discretize not only time but also 3-dimensional space, one is confronted with the
huge amount of N x Ny lattice sites. In order to get a handle on the integral over all field
configurations, one draws back on methods known from statistical mechanics. Monte Carlo
integration with importance sampling is the method which has emerged as standard in lattice
field theories. There, one approximates the integral (3.10) by an average over a statistical

ensemble of N field configurations &(na), n € Ay,

1
(T &) = i > dndm, n>=n. (3.21)

These field configurations, in turn, are generated with a Boltzmann distribution given by
exp(—Sg [2]). The major advantage of Monte Carlo integration opposed to non-statistical
integration methods is that its error is of order O(N -1/ 2), independently of the dimension of
the field’s domain.

3.2 Generalizing to 3+1 dimensions: the free scalar field

As already mentioned above, the preceding analysis of n-point functions for a 0+1 dimensional
field theory can be generalized to 3+1 dimensions immediately. In this section, we will give a
few remarks on the free scalar field ¢(x) as an example of a relativistic bosonic 3+1 dimensional
field theory. In this new context, x represents the vector of all Euclidean space-time coordinates
x, with p=1,... 4. By convention, one defines the temporal component as x4 in the Euclidean

formulation to distinguish it from the temporal component xy from Minkowski space.
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We now give a set of rules how the HO Lagrangian® can formally be transformed to the

Lagrangian density of a free scalar field:
1. Replace the field z(t) — ¢(x).
2. Generalize integrals and derivatives to 3+1 dimensions.
3. Cancel m in the first term of the Lagrangian.
4. Replace mw? — M? in the second term of the Lagrangian.

The Euclidean space Lagrangian density one reaches when carrying out these simple steps reads
1 2 1.9

and the action is obtained by integrating £ (z) over 3+1 dimensional space-time. After a

integration by parts,? as we did in (3.3b), the latter becomes
1 4 2
Sule] = 5 /d z(z) (~0+ M?) ¢(a) (3.23)

where O =3}, GZ is the d’Alembert operator. Note that the parameter M in the action (3.23)
is the bare mass and does not coincide with the physical mass in general.

We now introduce a lattice for 34+1 dimensional space-time,
A={n=(ni,...,n4)|n,=0,...,N, — 1}, (3.24)

where we again adopt periodical boundary conditions. Discretizing the action can be done
in exactly the same way as for the HO and in complete agreement we would reveal that the
two-point function (0| (¢, dm) |0) is given by the inverse of the kernel appearing in the action.
We simply state here the result of the inversion of the kernel which alternatively can be obtained

by applying the above mentioned rules on the corresponding HO result,

d4ﬁ eiﬁ~(n—m)

017G b 0) = [

—. 3.25
T (27T)44Z“Sin215u/2+M2 ( )

(;Abn is the field ¢, scaled with the lattice spacing a to make it dimensionless, qgn = ap(na).

1 Cf. the expression in parentheses in (3.3a).
2 Integration by parts in n dimensions is formally known as Green’s integration formula, see Appendix A.2.
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3.3 Fermions on the lattice

In this section we switch from real scalar fields to complex spinor fields. We first look at classic
fields

b, 2= D,z y(a),d(z) (3.26)
with 2 C R* and D C C*. The fields ¥(x) and 1 (x) are related by ¥(z) = (¢7 (x))*v4, though

they are treated as independent integration variables. The 4 x 4 Dirac matrices -, fulfill the

Euclidean anti-commutation relations

{Yuwh =201 (3.27)

The classic equations of motion can be deduced by minimizing the fermionic action which, in

the free case, is given in Euclidean space by

Selb0) = [ A (@) (3,0, + M) v(@) (3.29)

In the quantum formulation one has to take additional contributions from configurations with
non-minimal action values into account. Furthermore, the complex valued fields ¢ and v have
to be replaced by operators that anti-commute, in order to satisfy Fermi-Dirac statistics. The
fermionic two-point function, i.e., the fermion propagator, which is of particular interest to this

work, is related to the following formal PI expression in analogy to (2.34),

[ DYDY () Yy(a’) e SrOV]
N [ Dy DY e=Srll :

(a(@) Ga(a')) (3:29)
The indices «, 8 label the different components of the spinor fields. It has to be stressed that,
while on the Lh.s. of (3.29) the field components represent operators, the field components on

the r.h.s. are not simply numbers, as in (2.34), instead they are anti-commuting variables,

{ta@), B5(x)} =0, (3:30)

and hence are members of the so called Grassmann algebra, for details see ,e.g., [20].
We are now ready to discretize the Dirac field. To this effect we replace continuous space-time
by a discrete lattice A, cf. (3.24), and the discrete fermionic action then reads, in terms of

dimensionless quantities only,

Srl 0] =D ©a(n)Dag(nm)is(m), (3.31a)

n,m a7ﬂ
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with
1 ~
Dag(n,m) = - Z(’yu)aﬁ [5n,m—ﬁ — 5n,m+ﬂ] + Ménméag. (3.31b)

2 H
Note that from now on we will neglect the hat on the fields 1 and v to simplify notations,
nevertheless it will be obvious whether 1,1 are dimensionless or dimensionful variables in
each expression. The kernel of the fermionic action, D,g(n,m), is usually referred to as Dirac
operator and /i denotes the unit vector €, in the direction p. In conjunction with discretization
of space-time, the formally defined PI (3.29) becomes finite and thence the discrete fermion

propagator is given by

(baln) Tgm)) = [ DODT () Fylam) =57, (3.324)
with the partition function

Z = / Dy D e °F (3.32b)
and the integration measure defined by

DYDY = [ [T da(n) dys(m). (3.33)

n,m 047/6
We are now ready to perform the integral in (3.32a). Remark that, contrary to the Gaussian
integral in (3.14), where we had to integrate over conventional numbers, we are here confronted
with an integral over Grassmann numbers. For details of Grassmann integration we refer to

[20] and summarize the results relevant to our analysis:

/D¢ Dy e > nm Ya (M) Dag(nm)ips(m) _ det [D], (3.34a)
and, moreover,

/ DY D e (n) Bg(m) e Zomam VaMPastmmolm) _ qe (D) D2 (n,m). (3.34b)

Since we deal with the ratio of these two integrals, the factors det [D] cancel and we are left
with the result analog to the free scalar field: the free fermion propagator is given by the inverse

of the Dirac operator,
(a(n)P5(m)) = Dyj(n.m). (3.35)

The inversion of the Dirac operator, to obtain the fermion propagator, can be done in the same

way as the inversion of the corresponding kernel in Sect. 3.1, where we used the momentum
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space delta function, and thus we acquire for the lattice fermion propagator

_ T A4 —i (V) ag bip+ Moag
<¢a(n) wﬁ(m)> - /_w (2m)* k2 + N2 e, (3.36)

where we have defined the dimensionless “lattice fermion momenta”

A~

k, =sinp, < k, =1/asin(pya). (3.37)

From (3.36) we can immediately read of the free momentum space fermion propagator, that we

will denote with S,z(p),
—1 (’Yu)aﬂ Ky + Moap

Saﬁ(p) = 2 n 2 (3.38)
Its inverse, the free momentum space Dirac operator, is then given by
S;ﬁl(ﬁ) = Dap(p) =i (’Yu)ag ]%u + M(Soc,@- (3.39)

Of particular concern is the difference between the just introduced lattice fermion momenta
and the momenta of the free scalar field, (3.25), which we found to be 2sin#x/2. It turns out
that the differing factor of one half in the argument of the sine is very crucial to the existence
of the correct continuum limit. While in the case of lattice fermions the sine is integrated over
the whole Brillouine zone (BZ) (—m, 7|, the sine in the propagator of the free scalar field takes
only values within half of the BZ, cf. Fig. 4.29. The correct naive continuum limit! of the free
scalar field is ensured by the bijective character of its lattice momentum.

In the massless case, the free lattice fermion propagator (3.38) has not only a single pole for
pp =0, u=1,...,4, as in the continuum, but it has additional poles whenever all p, equal
either zero or 7/a. Hence the propagator has 2* = 16 poles, the number of poles gets doubled
for each dimension d. Thus, the naive discretization of the Dirac field describes 16 degenerate
flavors of fermions, i.e., 16 fermions of mass M. This phenomenon is referred to as “fermion
doubling” and one problem encountered therewith is that QCD only has asymptotic freedom
for the number of flavors being less than 33/2 and 16 is rather close to this transition. Another
problem is the loss of axial anomaly on the lattice due to fermion doubling, for details on the
latter see ,e.g., [24].

In the following we will introduce two possibilities how to circumvent the problem of fermion
doubling. We will present Wilson’s approach as well as the approach by Kogut and Susskind to

get rid of, or at least to drastically reduce, the number of the doublers.

1 Scale all quantities with powers of a, according to their canonical dimensions and let a — 0.
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Figure 3.1: Lattice momenta for different values of the lattice spacing a.

3.3.1 Wilson fermions

The idea of Wilson to eliminate the doublers is to give them an additional mass which depends
on the lattice spacing a and becomes infinite in the limit a — 0. To this effect, consider the

replacement

M — M+ gz (1 —cos (pua)) (3.40)
n

for M in the expression for the free momentum space Dirac operator, (3.39). The parameter r
is arbitrary but in practical calculations usually set to one, for ease of notation we will neglect
it in the remainder of this work. Note that we deal with dimensionful quantities in this passage,
in order to make the a dependence of the rightmost term in (3.40), the so called Wilson term,
explicit. The Wilson term has no influence on the physical pole p = (0,...,0) of (3.38) and it
lifts the mass of the doublers towards infinity in the continuum limit, thus, at least in the limit
a — 0, the doublers decouple from the theory due to this additional mass term.

In the following, we prove that the Wilson term is simply the Fourier transform of the kernel

of the discrete Laplace operator. To show this, we plug the momentum space delta function
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(3.16) into the discrete Laplace kernel and that leads to

511 m—fi + 671 m+a 25nm)
— : : 41
> ( o (3.41a)
_/ ﬁ <_ ol (n=—m+ft) _ ip-(n—m—p) 4 o (i (n— m)) (3.41D)
)
d*p

Q 1
:/ —Z 1 — cospy)e” (n=m). (3.41c)
(27 ) a m

Having gained the Wilson term in coordinate space, we are now in the position to write down

the free coordinate space “Wilson Dirac operator” which is the sum of (3.31b) and (3.41a),

Dgﬁv)(n,m) = %Z {(7# - ]l)aﬁ Onm—pp = (W + ]l)ag 5n,m+ﬂ} + (M + 4) Onmdag- (3.42)

1
As we have seen, Wilson fermions offer a clear and transparent way to eliminate the doublers.
On the other hand, though, the most significant downside of Wilson fermions is that the Wilson
term explicitly breaks chiral symmetry,! even for non-vanishing mass. Obviously, this flaw
makes Wilson fermions inappropriate for studying effects of chiral symmetry breaking on the
lattice. Below we discuss another approach how to gain control of the doubling problem which

retains a residual chiral symmetry.

3.3.2 Staggered fermions

Before we introduce the ansatz by Kogut and Susskind [25], let us shortly specify how momenta
are represented on the lattice. As already mentioned above, we restrict the lattice momenta p,
to the first BZ (—m,x]. Thus, we let

2
ﬁu:]\;;(nu+1—Nu/2), n,=0,...,N, — 1. (3.43)

Notice that the problem of fermion doubling is only apparent for momenta p,, > 7/2 or

Pu < —7/2. These momenta belong to lattice sites contained in the set

Ky ={nu|ny < (Nefa) Vi, > (3Nu/a) }, (3.44a)
whereas the set

My = {ny, | (Nufa) <y, < (3Nufa) ) (3.44b)

1 For a short revision of chiral symmetry see Appendix A.3.
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contains lattice points that do not contribute to the problem of fermion doubling since sin(p),
restricted to (—7/2,7/2], is bijective. Obviously, the cardinality of both sets equals Nu/2 and we
could define a one-to-one mapping between the sets M, and K, for fixed p. Taking into account
that our lattice is four dimensional, 4 = 1,...,4, we may correspondingly connect every point
in M = {n|n, € M, Vu} uniquely with 2* — 1 = 15 points lying in K = {n | 3u: n, € K,}.
Remember that we adopted periodical boundary conditions, therefore, we can write the discrete

momentum p as

ﬁu = (ju + pum, qA/J € M/u P = {07 1}' (3'45)

The essential step in the construction of the Kogut—Susskind fermions is that one uses each
of the clusters of 16 connected lattice sites! to host a new fermionic field of a fixed momentum
¢ € M and 16 components p = (p1,. .., p4), pp = 0,1 which we may denote by x,(§). Interpreted

another way, the field x is a scalar (Grassmann valued) field of the initial momentum p, thus

Xp(4) = x(q + pr) = x(D)- (3.46)

Despite we do not know yet how to interpret this new field x,(g), it is remarkable that it is solely
defined to live on the “good” lattice sites M which are not affected by the problem of fermion
doubling. One might already guess that since we reduced the fermionic degree of freedom per
lattice site from four to one, we contingently reduced in correspondence the number of fermions
in our theory from sixteen to four which indeed turns out to be true. For a derivation of the
fact that the number of flavors? described by the staggered fermion formulation is four, see
e.8., [24].

Having shown this rather descriptive and motivating outline for the construction of the
staggered fermions, we now come to the technical derivation: we define the so called staggered

transformation as

D(n) = @ (N)VIAGeaE2Am ) h(n) = AMaR2aEsy Ay (n), (3.47)

where n = (n1,...,n4) is a lattice site in coordinate space. Clearly, the mass term of the
fermionic action (3.31a), ¢ (n)M1(n), is invariant under this transformation because 77 = 1

for all u. Next we consider the kinetic term of the fermionic action,

5 0 ) [+ ) — (. — ). (348)

nm @

1 These clusters build hypercubes of length 7 in momentum space.
2  When referring to the different flavors of the staggered fields one usually speaks of taste instead of flavor.
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As we readily see, the lattice coordinates n of ¥ and v differ by one unit in direction of /i; as
a consequence, when performing the staggered transformation (3.47), all 4/ cancel, except
for v = p. This remaining 7,, on the other hand, gets canceled by the one which is already
apparent in the Dirac operator and we are left with only an eventual sign change due to the
anti-commutativity of the gamma matrices and the need to swap them in order to cancel them.

In this way we get rid of the Dirac structure of the action; we cancel all y-matrices and
the resulting action is diagonal in Dirac space. Hence, all four Dirac components of the fields
¥'(n) and ¢/(n) are equivalent and we will only keep one of them which we call X(n) and x(n),

respectively. The free fermionic action, in terms of the Kogut—Susskind fields, then reads

Z X(n) D (n,m)x(m), (3.49a)

D (nm) = 5 LS () Bt — Sl + Vb, (3.49b)

where we defined the staggered sign function
Mu(n) = (—1) 2™, (3.50)

As a remark, we now give the coordinate space interpretation which corresponds to the one
we adopted in our motivation in momentum space: interpret the field y(n) as a field with 16
components x,(h) living on a lattice with double lattice spacing,! h = /2, and spread the 16

field components among the hypercubes of length a,

x(n) = x(h+p) = xp(h), pu€{0,1}. (3.51)

For the later analysis of the fermion propagator we need the Kogut—Susskind Dirac operator

in momentum space. From the above discussion it is evident that

T d4ﬁ ip-n N "/ d4(j . i(g+pm)n A
xim) = [ SR = [ ety ), (352
= (2m) e 2m)" oo

with x,(4) given by (3.46). When plugging (3.52) and the momentum space delta function into
(3.49) one obtains, see [13],

7r/2 d4'\ A ~ R
Srx:X] :/ o 2n)? E Xa () lzi Vp)ap sin(Gu) + Moag| x5(4)- (3.53)
—m/2
a,f 1

1 This corresponds to restricting the momenta to the inner half of the BZ.
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Note that here, a, 6 are not Dirac indices but staggered multi-indices. The staggered momentum

space Dirac operator stands within brackets and can directly be read off. In (3.53) we defined

Vap = (—1)a”ga+9(u),5 (3.54a)
with
0B = Oa, @, mod 2 (3.54D)
and
1 ifv <y,
Oy (1) = g (3.54c)
0 else.

The (5,)ap form a staggered Dirac algebra

{@ﬁu}aﬁ = 20,1,005. (3.55)

We close this section by recalling the main advantage of staggered fermions over Wilson
fermions: we show that the former feature a residual chiral symmetry. The equivalent of ~5 for

staggered fermions is found to be

4

Ms5(n) = (—=1)2v=1". (3.56)
Therewith consider the staggered chiral transformation
X(n) = x(n) B, x(n) — ™ x(n) (3.57)

under which the staggered action (3.49), in the limit of vanishing mass M, is invariant since

v5(n £ fi) has a relative minus sign in comparison to 75(n) and thus the exponentials cancel.

3.3.3 Improved staggered fermions: the Asqtad action

The errors of the Kogut—Susskind action are of order O(a?) and we now shortly present an
improved staggered action which eliminates all errors of order a®. The Asqtad® action [26] was
mainly constructed with the aim of reducing taste symmetry breaking of the four staggered
quark tastes but beside achieving the latter it also exhibits good rotational symmetry properties.

Taste changing can be minimized by replacing the nearest neighbor terms in the action by
an average over paths connecting the corresponding points. The Asqtad action uses three-link,

five-link and seven-link paths or staples. When referring to this procedure one speaks of

1 The name Asqtad action is a shorthand for a-squared tadpole improved action.
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“fattening” the links. Additionally, the Asqtad action contains the Naik term [27] to improve the
dispersion relation and a planar five-link Lepage term [28] to correct the infrared. All terms are
tadpole improved [29] and as the tadpole ug we will use the forth root of the average plaquette.

The free momentum space Dirac operator, using this action, has the form

Das(g) = it >_ (7, ) 5in(q) (1+ osin?(,)) + Mag. (3.58)

3.4 The need for gauge fields

The fundamental fields of nature are believed to be Dirac fields which describe matter, i.e.,
fermions like electrons and quarks, and gauge fields which describe the fundamental forces,
i.e., bosons like photons and gluons. The last section was dedicated to fermionic fields. It now
remains to introduce gauge fields in order to describe fundamental field theories like Quantum
Electrodynamics (QED) or Quantum Chromodynamics (QCD). To get started, we shortly

review the introduction of gauge fields in the continuum before we introduce them on the lattice.

3.4.1 Gauge fields in the continuum

Once again, have a look at the fermionic (continuum) action in Euclidean space

Selb] = [ a2 (@) (0 + M) ¥(@), (3:59)

notice that we use matrix/vector notation in Dirac space here. This action is invariant under a

global gauge symmetry
P(a) = P(@)G7H, () — Gy() (3.60)

where G is an element of the underlying gauge group, U(1) in the case of QED and, as we will
see in the next chapter, SU(3) for QCD. For the moment one may think of G as an element of
U(1), i.e., G = e with A € R.
When we demand this symmetry to be local instead of global, we have to introduce a vector
valued field
A:2—D, x+— Ax) (3.61)

where 2 C R* and D C R*. We include this vector field into the action by replacing the
derivative 0, by the covariant derivative D, = 0, + iA,. Then the action (3.60), with 0,
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replaced by D,,, becomes invariant under following local transformations

P(z) — P(x)G () (3.62a)
P(x) — G(x)(x) (3.62b)
Ap(z) = G(x)Au(z)GH(2) + i (8,G(z)) G () (3.62c)

Note that for QED A, (x) and G () commute and thus (3.62c) reduces to A,(x) — A,(x) —
i0,A(x). Hence, in order to ensure local gauge invariance of the fermionic fields, we have to

introduce an additional field A, (x) which is therefore referred to as gauge field.

3.4.2 Gauge fields on the lattice

Now we perform the analog steps on the lattice, consequently, we demand the fermionic lattice

action,!

4 ~ ~
Sl = ot 3" wn) | 30 LOED V) gy (3.63)
pn=1

neA

to be invariant under local gauge transformations. The mass term is already invariant and for

this reason we focus on the kinetic term, i.e., we require ¥ (n)y(n & fi) to be invariant under

b(n) = Y(n)G7H(n),  P(n) — G(n)y(n). (3.64)

It is easy to see that we can achieve invariance when we introduce a oriented field U, (n) which

transforms under gauge transformations as
Ugp(n) — G(n)Ux,(n)G™Hn + fi). (3.65)
Then the first part of the kinetic term transforms as+

D) Uu(n)p(n+ 1) —1p(n)G~ (n)G(n)U,(n)G~ (n+ p)G(n + ) (n + f1)

_ (3.66)
= Y(n)Uy(n)ip(n + )
and, equivalently, the second part
YU (n)y(n — f) — ()G~ (n)G(n)U-,(n)G™ (n — )G(n — p)(n — ) (3.67)

= B(n)U_(n)o(n — ).

1 For this analysis it suffices to consider the naive fermion action which exhibits doublers.
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We see that the field U,(n) links neighboring lattice sites n and n % fi, therefore, the U, (n) are

called link variables. When we invert (3.67) and shift all sites n — n + i we can identify
U_y(n) = U (0 — ), (3.68)
that means the link variable in negative direction —f is given by the inverse link variable from

the site n — i in positive direction fi, see Fig. 3.2. One may compare the link variables with the

|n+ﬂ |n |n—|—ﬂ

e Ut ) = U ()

Figure 3.2: Link variables

path ordered continuum gauge transporter to find a connection between the link variables and

the continuum gauge field A, see [20, 24],

Uy(n) = efadn() (3.69)

3.5 Lattice Quantum Chromodynamics

We finally have all ingredients together to describe QCD on a discrete space-time lattice. QCD
is the theory of the strong interaction which is responsible for the hadron spectrum, hadrons
are the fundamental building blocks of matter and are themselves built up from two or three
quarks. The quarks carry, besides the electromagnetic charge, a so called color charge! from
which there are three types, thus the corresponding gauge group is SU(3). Usually one refers
to these color charges as red, green and blue plus their counterparts anti-red, anti-green and
anti-blue as charges of the anti-quarks. As a matter of fact, hadrons exist in nature only as
color-neutral composites of these quarks, i.e., they are either build up from three (anti-)quarks
with color charges (anti-)red, (anti-)green and (anti-)blue, resulting in a color neutral composite
called baryon, or from two quarks, i.e., a quark and an anti-quark, making up a meson. This
phenomenon is known as color confinement.

Moreover, we nowadays know about six different types of quarks. To distinguish them, one
speaks of different flavors of quarks which are named up, down, charm, strange, top and bottom

and they differ above all in their masses. They also differ in their electric charge but this will

1 Hence the name Chromodynamics
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not be of interest to us since we do not take QED effects into account.

The second sort of particles in QCD are the gluons and there are eight different types of them,
according to the eight generators of the group SU(3). The gluons act as the force transmitters
of the strong nuclear force in the same way the photons transmit the electromagnetic force, i.e.,
the quarks exchange gluons and thus feel a force between them. But there is a vital difference
between photons and gluons, the latter carry themselves a color charge and as a result gluons
interact with the like. This difference cannot be overemphasized since it is believed to be the
origin of color confinement and makes QCD a highly non-trivial theory. The origin of the
gluonic self-interaction lies in the non-commutativity of the underlying gauge group SU(3).
Non-commutative groups, or non-Abelian groups, as gauge groups, were suggested by Yang and
Mills [30] and accordingly the corresponding theories are referred to as Yang-Mills theories.

The quarks, being fermions, have to be described by Dirac fields
O (8.70)

where a = 1,...,4 is the Dirac index as before and a = 1,2, 3 is the newly introduced color
index, f is the flavor index which we will neglect most often. To obtain the quark action — the
free fermionic lattice action — either Wilson type or staggered type, with which we became
acquainted in the previous section, have only to be modified to include a sum over the additional
indices of color and flavor.

To incorporate the gluonic fields, we couple the gauge group valued link variables
b
Uy (n) (3.71)

to the quark fields. Here again, the Roman letters a,b = 1,2, 3 represent color. On that account,
for fixed p, U, ﬁb(n) is an element of the non-Abelian group SU(3) and its inverse is given by
b
Uy (n)t.
Then the full fermionic lattice action of QCD, with Wilson fermions, in its most explicit form

reads

6 4
SelpBU) = a' Y w‘”wg(; >0 [ O = D Ui ()

=1 n,meA

— (e + 1) oy U ()0 | + (M) 4 47a) 5nm5aﬂ5ab> sD(m)ly (3.72)

where a sum over «, 8 and a, b is understood. The expression in parentheses is the Wilson Dirac
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operator, thence
SrlYp,Ul =) a* P (m)s DU (n,m)2y 6D (m), (3.73)

where we made the gauge field dependence of D")[U] explicit. For sake of readability we will
adopt matrix/vector notation in Dirac and color space in the remainder of this work where
appropriate.

The fermionic term is just the first part of the complete QCD action. What is still missing
is the kinetic term of the gluons, that we will discuss now. Therefore, we initially convince

ourselves that the trace of a closed loop of N link variables
tr[Uﬁ10%O[&u(n2)"'UﬁN(nlﬂ C}74>

is a gauge invariant object. This can be seen when taking into account the transformation
property (3.65) of the link variables and the cyclic permutation property of the trace: all gauge
group elements G(n) € SU(3) between two link variables cancel Gf(n; + f1;)G(n; + f1;) = 1
and the leftovers to the left of the path, G(n;), and the right of the path, GT(n;), cancel as
well since we may cyclic permute under the trace so that G(n;) and GT(n;) stand next to each

other. The shortest such closed loop on the lattice is called plaquette and is defined by
U (n) = Uu(n)U,(n+ @)U (n + 2)UJ(n), (3.75)
where we used (3.68) for the links in negative fi, 7 direction, cf. Fig. 3.3.

-" A
o | U D) s

<
<

uim) Y O A Uln+p)

multiply

A

" Uu(n) nt

Figure 3.3: The gauge invariant plaquette

Wilsons gauge action [31] is constructed by summing over all possible plaquettes subtracted

from the identity matrix and taking the real part of the trace therefrom,

SalU] = 922 ZA S Re tr (1 — Uy (n)]. (3.76)
neA p<v
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When taking the naive continuum limit this expression converts into the familiar continuum

expression, see ,e.g., [24],
SalA) = 505 [ @' tr [Fuu @) Fufe)], (3.77)
where £}, is the field strength tensor
Fu(z) = 0,A,(x) — 0,A,(x) +i[Au(z), Ay (x)]. (3.78)

We are now ready with the construction of a lattice formulation of QCD. The full lattice

QCD action is then given by

SQCDW@?U] = SF[?/)@?U] + SG[U]’ (379)

with S¢[U] being Wilson’s gauge action, (3.76), and with Sp[1,1,U] given either by (3.73) or
by the corresponding expression for staggered fermions (3.49), where one still has to add color

and flavor indices.



Chapter 4

Quark Propagator from the Lattice

In this chapter we discuss the numerical calculation of the fermionic two-point function of QCD
on a space-time lattice. To this effect we analyze the peculiarities of gauge fixing on the lattice,
present the methods we use for fixing the Coulomb gauge as well as the residual gauge and
for the inversion of the Dirac operator. Moreover, we introduce the dressing functions of the
interacting propagator and show how these can be extracted, once the lattice propagator is
on hand, for the case of Wilson’s fermions and staggered fermions. At the end of this chapter
we show the skeleton of a computer program which actually calculates the fermionic Green’s

function.

4.1 Path integral representation of the quark propagator

From what we discussed in the previous two chapters, we are now able to write down the PI

formulation of the fermionic two-point function of QCD, the quark propagator,

[ DUDY D p(n) h(m) e Sr¥#U]=SalU]
- [DU DYDY e F [¢,9,U]-Sc[U]

S(n.m) = ((n) $(m)) : (4.1)
where the fermionic action Sr is given by (3.49) or (3.73) and the gauge action S by (3.76).
Note that S(n,m) is a matrix in color and Dirac space and thus has N2 -42 = 9 .16 = 144
components for each combination of n and m. Naturally, we also integrate over all possible
gauge field configurations in (4.1) where, again, those configurations which are close to the
classical minimum give the main contributions. The integration measures for the quark fields

are defined as in (3.33) with additional color indices and the integration measure for the gluon

31



32 Chapter 4 Quark Propagator from the Lattice

fields is given by
DU =[[][dU.(n), (4.2)
nop

where each integration measure dU,(n) for fixed n, u is a gauge invariant measure over the

continuous compact group SU(3), known as Haar measure. It is normalized to
/dUu(n)zl, neAu=1,... 4 (4.3)

The explicit form of the Haar measure is given, e.g., in [24] but is not relevant to us since
we will utilize Monte Carlo integration to calculate the quark propagator numerically on the
lattice. Observe that we cannot simply calculate an ensemble average over Grassmann variables
opposed to the case of the 0+1 dimensional scalar field in Sect. 3.1 eq. (3.21), where we dealt
with conventional numbers. Fortunately, though, we can explicitly integrate out the quark field
dependence of (4.1), to this effect use (3.34) to obtain

fDU D1 [U] (n’m) e~ In det[D[U]]-S¢|U]
= [DU e In det[DIU]-S6[U] :

S(n,m) (4.4)
Note that unlike in (3.34), here the fermion determinant det[D] does not cancel because the
Dirac operator D[U](n,m) depends on the link variables U, — which stems from the coupling
of the link variables to the quark fields — and we integrate over all U,. Nevertheless, it is
remarkable that the PI expression for the quark propagator (4.4) does not include quark
field configurations anymore but solely contains (non-local) expressions depending on the link
variables.

Now, having got rid of the propagator’s quark field dependence, we can calculate the
propagator numerically by generating N gauge field configurations U, #(n)("),i =1,...,N, with

a Boltzmann distribution given by the effective action

o In det[D] S [U] (4.5)

and then inverting the Dirac operator on these configurations. Finally we average over the

results from all configurations,

1L (i)
S(n,m) = N Z D [UY](n,m). (4.6)
i=1
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4.1.1 Quenched approximation

It has to be remarked that since the Dirac operator, ngﬁ[U |(n,m), for fixed color and Dirac
indices, is a huge matrix in n,m with number of entries of the order O ((L? x T)?) = O(10%!),
it is incredibly expensive, in terms of computation time, to calculate the fermion determinant.
For this reason we will adopt the so called quenched approximation on those configurations
which we generate on our own. Within this approximation, one sets the fermion determinant

equal to one and therefore the PI expression for the quark propagator simplifies to

_ /DU DU (n,m) eIV

S(n,m) DU o5l

(4.7)

The quenched approximation corresponds to neglecting the effects of closed quark loops as
can be deduced in the hopping expansion for the Dirac operator. There, one writes the Dirac
operator as, cf. (3.72),

D[U] = (M +4/a) (1 — kH[U]) (4.8)

and expands it for small k = 1/(2Mma+8), i.e., for large mass. & is referred to as hopping parameter

and H is the so called hopping matriz,
4
H[U](n,m) = Z (1 =) UM(”)‘Sn,m*ﬂ — (L + ) UM(”)‘Sn,erﬂ] . (4.9)
pn=1

Put another way, in the quenched approximation one increases the mass of the sea quarks!
towards infinity and thus no quark/anti-quark pairs can be created and annihilated out of the
vacuum. On the other hand, when one does take the fermion determinant in the effective action
into account, with an arbitrary number of dynamic quark flavors, one speaks correspondingly
of a simulation with dynamic quarks or a dynamic simulation.

Gauge field configurations with a Boltzmann distribution given solely by exp(—Sg([U]), i.e.,
in the aforementioned quenched approximation, can be generated with, e.g., the heat bath
algorithm [32]. Creutz introduced in [32] the heat bath algorithm for SU(2) gauge theories and
Cabibbo and Marinari [33] showed how to update general SU(N) gauge configurations applying
the heat bath algorithm on SU(2) subgroups of SU(N).

1 One distinguishes between the propagating quarks (valence quarks) and the quarks which are dynamically
created and annihilated out of the vacuum. To the latter one refers as sea quarks following Dirac’s picture of
the sea of particles and anti-particles.
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4.1.2 Dynamical simulations

In addition to the gauge field configurations in quenched approximation which we generate on
our own with the heat bath algorithm, we will make use of configurations containing dynamical
quarks, provided by the MILC Collaboration [34] via the Gauge Connection.

4.2 Gauge fixing

In the continuum, gauge fixing is necessary to make the theory well-defined.? In comparison, on
the lattice, gauge fixing is not a prerequisite in principle; all gauge invariant PI are well-defined
and computable. Nevertheless, one has to fix the gauge on the lattice as well to compute
non-gauge invariant quantities. Assume a non-gauge invariant quantity O[U], for its vacuum

expectation value yields under arbitrary gauge transformations U — U’,
1 / 1
o) = / DU O[Sl = / DU O[] =56V, (4.10)

since the action and the gauge measure are gauge invariant. Because any desired gauge
transformation in (4.10) may be chosen, we equivalently could average over the whole gauge
group. Thus the vacuum expectation value of a non-gauge invariant quantity equals its
average over the gauge group and vanishes. Based on this observation, Elitzur [35] proved that
spontaneous breaking of local symmetries is impossible.

Whereas physical quantities are gauge invariant and the fermionic action, i.e., the combination

of the quark fields and the Dirac operator,
Sr[vd,U] = a* Y ¢ (n) DIU](n,m) ¢(m) (4.11)

is per construction of the gauge links invariant under gauge transformations (3.65), the Dirac
operator alone
1
D[U](n,m) = % Z YuUu(n)0nm—p — YuUp(n)nmep] + LM 0y, (4.12)
o
here in its naive discretization, is not gauge invariant. Thus the quark propagator, being the

inverse of the Dirac operator, is neither gauge invariant and we have to choose a particular

gauge before we invert the Dirac operator on each gauge field configuration.

1 http://qcd.nersc.gov/
2 Fixing the gauge in the continuum removes zero modes of the inverse gluon propagator which give rise to
singularities in the gluon propagator.
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4.2.1 Coulomb gauge

We will gauge-rotate all gauge links in such a way that they fulfill the Coulomb gauge condition,
which in the continuum reads 9;A;(z) = 0, where the Roman index ¢ runs only over the spatial
components, i = 1,2,3. As we show in Appendix A.4, this is equivalent to maximizing the

following gauge functional with respect to gauge transformations G(z) € SU(3) for all x4,

5 3 2
FolA(on) = Y- / & tr [(G(x)A,»(m)GT(x)) } . (4.13)

On the lattice, an equivalent extremization prescription can be formulated by, for instance,

maximizing

3
FolUl(ng) =a®>> Y. tr [G)Ui(n)Gi(n+7) + G(n+ )UJ (n)GT(n)| (4.14)
i=171,n2,n3
for each ny with respect to G(n) € SU(3), see (A.20).

Note that (4.14) has number of degrees of freedom of the order O(L® x T x (N2 — 1)) =
O(107) and moreover has very many local maxima, the so-called Gribov copies [4]. Therefore,
maximizing (4.14) is a highly non-trivial task. Two algorithms which have proven to be
adequate to attack this problem are simulated annealing [36], which is a global optimizer,
and overrelazation, [37] which is a local optimizer, and especially the combination of these
two. Nonetheless, these algorithms cannot ensure either that the unique global extremum of
(4.14) will be reached. For the quark propagator, though, we will show that the remaining
arbitrariness due to Gribov copies is of negligible influence. Studies, as for example [16], where
the Landau gauge quark propagator is compared to the Gribov copy free Laplacian gauge quark
propagator, point towards the same assertion. We will choose the termination criterion for

fixing the Coulomb gauge as

1
2V N,

Z?ﬁe {tr {Ul(n) —Ui(n — 5)” <e, (4.15)
i,n
where € we be specified below.

4.2.2 Residual gauge freedom

Once a maximum of (4.14) is found, hence the gauge is fixed to the Coulomb gauge, we are left
with a residual gauge freedom with respect to space independent gauge transformations G(z4) €
SU(3), as we prove in Appendix A.4. In the following we present two possible procedures how

to fix this residual gauge as well.
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Integrated Polyakov gauge

One possible choice to fix the residual gauge freedom in the continuum is to require
/ Prd,Au(z) = 0 — 0y / &z Ay(z) = 0. (4.16)
The lattice version thereof, cf. [11], is to seek a gauge G(n4) such that

1
a(na) = =5 > Ua(n) - const, (4.17)
n

where L3 =[], V; is the amount of lattice sites per time-slice. Such a gauge would manifestly be
space independent since we average on every time-slice over all spatial degrees of freedom. Note
that @(n4), as defined in (4.17) as a sum of SU(3) elements, is itself not an SU(3) element. With
the intent to project @(n4) onto a group element u(ng) of SU(3), we utilize Cabibbo—Marinari

cooling [33] and find u(n4) as the maximum

max Re tr [u(n4)ﬂ*(n4)} . (4.18)

u(na)

One should acknowledge that the above projection is much easier in the case of the group SU(2)

since the sum of SU(2) matrices is proportional to another SU(2) element and thus one would

simply have to divide @(n4) by +/ det [G(ng)].
Next we define the integrated Polyakov loop [38] by

P=tr [Hu(m;)] : (4.19)

which, as a closed loop, is a gauge invariant object as we have shown in (3.74). Explicitly, for

P holds under gauge transformations

P— P =tr [H G(ng)u(ng)Gl(ng +1)| = P. (4.20)
na
Then it is totally legitimate to choose G(n4) such that for all n4,
G(ng)u(ng)Gi(ng +1) = PY7, (4.21)

where PY7 is the T-th root of P, T = Ny being the number of lattice points in the temporal
direction. For a review of algorithms to find the matrix p-th root we refer to [39]. Hence, if we

choose, without loss of generality, G(0) = 1, we may find all G(n4) recursively by solving (4.21)



4.2 Gauge fixing 37

for GT(ny + 1),
Gl (ng +1) = ul(ng) G (ng) PY7. (4.22)

Once this recursion is executed, we gauge all U,(n) via
Ui(n) = G(ng)Us(n)GT (ng + 1) (4.23a)

or

Ul(n) = G(ng)Ui(n)GT(ny), (4.23b)
respectively, to eliminate the residual gauge freedom.

Integrated maximal trees

Hereafter, we suggest another possibility how the residual gauge freedom can be fixed that,
in comparison to the previous scheme, has the advantage of lacking the need of calculating
matrix p-th roots and moreover is related to the maximal-tree gauge which is a peculiarity of
the lattice. Define w(n4) as in (4.17) and project it to SU(3) as in (4.18). Then simply set

G(0) = 1,
G(1) = u(0),
G(2) = u(0)u(l), (4.24)

G(T — 1) = w(0)u(L)u(2) .. .u(T — 2),

to get a set of space independent gauge transformations G(n4). In the limit of a single spatial
lattice site, i.e., a temporal line, this gauge would transform into a maximal-tree gauge. That
means it would gauge all but one of the temporal links, Uy(n), to the identity. In this sense, this
gauge is reminiscent of the temporal gauge where all A, (n) are set to 0 and thus all U,(n) = 1.1
In the limit of a single spatial lattice site u(n4) = Us(n4) holds and thus we would obtain, when

gauging with (4.24),

Ui(0)  — G(0)U4(0)GT(1) = U1(0)U](0) —1,
Ui(1) - G(1)UL(1)G(2) = U(0)Us)U{()Uf(0) =1,

Uy(T — 1) —> G(T — 1)Uy(T — 1)G(0) : Us(0)U4(1)...Uy(T — 1) %11.

1 We cannot gauge all U,(n) to the identity on a lattice with periodic boundary conditions since the Polyakov
loop is conserved.
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4.3 Calculating the propagator

After we removed the gauge freedom on a per-configuration basis, the next step in the con-
struction of the momentum space quark propagator is to invert the Dirac operator, on each

configuration, and subsequently Fourier transform it to momentum space.

4.3.1 Inverting the Dirac operator

In every step of the Monte Carlo-Markov chain we have to invert the Dirac operator, Dg%[U] (n,m),
for all combinations of the color indices a,b and Dirac indices «,3. The Dirac operator is trans-

lationally invariant on a periodic lattice,
D[U](n,m) = D[U](n+€m+ L), €= ({1,...,44). (4.26)

Therefore, inverting the Dirac operator for all combinations of n,m results in a lot of redundant
information.! Taking this and the fact that inverting the huge matrix of the Dirac operator is
quite expensive into account, we choose to calculate the propagator not for all combinations of
n,m but fix m to an arbitrary site, let us choose m = 0.

Consequently, for a given point-source (0,@,a), we have to solve

> Dij(nm)Sig(m,0) = §(n)duaben V@7, (4.27)
m,(3,b

for Sb%(m,()) to obtain the coordinate space quark propagator.
We used and tested a variety of algorithms to perform this inversion, e.g., MinRes, BiCGStab
and UML [40].

4.3.2 Momentum space quark propagator

Once the coordinate space propagator S(m,0) is obtained, it remains to Fourier transform it to

momentum space,

S(p) = Z e~ ™ S(m, 0), (4.28)

1 Though it would increase statistics.
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where the discrete momenta are given by

2 N;
Di = i (m—l—l—Z)a ng =0,..., Ny —1,

2i7( 1 2]V ( 2 )
4

- + - — — =0,...,Ng4— 1.

P4 N4 <n4 2 2 )7 ng ) s 4V4

The difference of 1/2 between the spatial momenta p; and the energy p4 stems from the
anti-periodic boundary conditions in the temporal direction. We use anti-periodic boundary
conditions in the temporal direction, as appropriate for fermions, to ensure the reconstruction
of the Minkowski type Hilbert space [22].

4.4 Dressing functions

In the aforegoing sections we discussed in detail how the interacting momentum space quark
propagator can be obtained on the lattice and we are now in the position to study its properties.

From (3.38) we know that the momentum space quark propagator at tree-level! is of the form

5O (), = —i(%)aﬁffg— iE%)aﬁf@; + Mg Sup, (4.30)
k™ + k3 + M?

with the lattice fermion momenta /2:“ = sinp, which we introduced in (3.37). In expression

(4.30) the superscript 0 shall remind as that we are confronted with the free propagator. Since

we study the propagator in Coulomb gauge, which distinguishes spatial from temporal degrees

of freedom, we separated -,k into its spatial and temporal parts. Using matrix/vector notation

in Dirac space and omitting color indices, this yields

—1 —1iki — iyaks + M1
k* + Kk} + M2

= a (ivik; + iyaks + M1)7Y, (4.31b)

SO(p) =a

(4.31a)

where we made the implicit a-dependence explicit. The last equation can be verified by
multiplying both sides with the inverse tree-level quark propagator, i.e., the free momentum
space Dirac operator,

SO ()™t = iyikia + ivaksa + Mal. (4.32)

Our interest lies in how the free propagator changes when the interactions with the gluon

fields are turned on. We expect the full propagator to be of similar form to its tree-level

1 This means having set all gauge links to 1 and thereby turned off the interaction with the gluons.
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counterpart, thus we may write for the full inverse propagator
S7Hp) = ivikiaAs(p) + ivaksaAy(p) + ivikiyakaa® Aa(p) + B (p)1. (4.33)

n (4.33) we introduced dimensionless real scalar functions As(p), A¢(p), Aqa(p) and By, (p) to
which we will refer to as the spatial, temporal, a potential mixed and the massive component,
respectively. These functions must clearly depend on the momentum and due to asymptotic
freedom we expect the full propagator to merge into its tree-level expression for large momenta.
Regarding the extraction of these scalar functions from the lattice quark propagator, we have

to distinguish between Wilson type and Kogut—Susskind type fermions.

4.4.1 Wilson fermions

Remember that the only difference between Wilson’s formulation of the momentum space Dirac
operator and its naive discretization is the additional Wilson term, cf. (3.40). Hence, formally
we simply may write M (p) instead of M, where M (p) stands for the r.h.s. of (3.40), to account
for the Wilson term, then M (p) coincides with By, (p) at tree-level.

With the aim of extracting the dressing functions As(p), A¢(p), Aq(p) and B, (p), we multiply
the inverse lattice quark propagator (4.33) with ~;k;, yaka, vikiyaks or 1, respectively, take the

trace with respect to Dirac and color indices and use

tr[y,] =0,
tr (Y] = 40, (4.34)
tr [Y. 770 = 0,
tr [V Vo] = 4 (6uGps — Opupdue + Opobup) -

From the last-mentioned set of equations follows in particular

tr | (yikia) }_4218 2

(4.35)
[(%k ayakaa) } - —421@2 224
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and in this way we attain the following expressions for the dressing functions

_2 _
As(p) = mtr {%kiS 1(19)} ;
— .
Ai(p) = m tr {W4k45 (p)} ,
_Z _
Aq(p) = IN, S, K2k2a? tr [%kﬂik‘zs 1(]9)} ;

The factor of 4N, results from taking the trace over Dirac and color indices.

(4.36a)
(4.36D)
(4.36¢)

(4.36d)

Now we know how to obtain the dressing functions from the Dirac operator S~!(p). It is the

inverse Dirac operator, though, which coincides with the fermionic two-point function. Such

being the case, consider the quark propagator (4.31a) dressed with the same functions,

S(p) =

—ivikiaAgs(p) — iyakaaAr(p) — i’yiki’y4k4a2Ad(p) + Bn(p)1

where we defined in the denominator

D*(p) = > _kia*A3(p)

D?(p) ’

as

+ kia® A7 (p) + ki ) _ kia' AG(p) + Br(p)-

(2

(4.37)

(4.38)

Thence we can calculate, in the same manner as before, the dressing functions of the quark

propagator as:

A) = o = s kS o)
Ap) = B = e ke (o)

Adr) = GH = s ek akaS(0).
Bulp) = TaE) = - tr (S0

In Appendix A.5 we show the equivalence

Arlp) = T A AL =
= Alp) = ) A ) =

s 5 - 5
As(p) _ Aa(p) ~ Bu(p)
D2() A Aq(p) = D20p) A Bn(p) = D2p)

(4.39a)
(4.39b)
(4.39¢)

(4.39d)

(4.40a)

(4.40D)
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with
D*(p) = > kja® A2(p) + kia® A7 (p) + ki Y _ kia* A%(p) + Br(p). (4.41)

i i
In consequence, we may first calculate the functions As(p), A¢(p), Aq(p) and By, (p) from the
lattice quark propagator as depicted in (4.39) and then ultimately acquire the dressing functions
As(p), Ai(p), Ad(p) and By, (p) by (4.40D).

It is also worth mentioning that by proceeding in the same manner we are able to extract
the fermion lattice momenta k, directly from the tree-level quark propagator. Consider the

tree-level Dirac operator (4.32) rewritten as
SO ()™ = iruCu(p) + M(p)al. (4.42)

If we want to extract the functions C),(p), which we expect to coincide with the fermion lattice
momentum k,a, we find

Culp) = 1 tr [1,50 (0)] (4.434)

7
4N,
and

Cu (p )

A — (4.43b)
Ci(p) + M?(p)

C“(p) =
An analog decomposition of the lattice quark propagator in Landau gauge, where there are

only two dressing functions, was done in [12].

4.4.2 Staggered fermions

In (3.53) we casted the free staggered momentum space Dirac operator into a form reminiscent

of the Wilson or naive discretization case,

0), \— ; _ A N
Séﬁ) (@) t=i Z(vu)ag sin(gu) + Méags- (4.44)
“w
Here we suppressed color indices and «,3 are not Dirac- but staggered multi-indices a =
(a1,...,04),0, = 0,1. Remember that the discrete momentum ¢, is restricted to the inner BZ,
Gu € (—7/2,7/2], for staggered fermions. We will also make use of the shorthand for the fermion
lattice momenta, as before, thus in the context of staggered fermions we set ]%u = sin gy.

We first sum over one of the propagator’s multi-indices, > 5 = Zbl 34=0, and define

Z —i(ﬁﬂ)aﬁg‘u + Mgaﬁ

o (4.45)
5 +

Gale) =" SS)(0) =
B
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In order to evaluate the r.h.s. of (4.45), we realize that
Z(Vu)aﬂ = Z(_l)a“ga-&-@(u)ﬂ = (—1)™ (4.46)
B B

and therefore we can write the dressed staggered Coulomb gauge propagator as

Ga(q) _ —i(—l)aikiaAs(Q) - i(—l)a4k4aA;)(2q()q)— i(—l)ai+a4 kzik4a2Ad(q) + Bm(q) (4'47)

with D?(q) defined in analogy to the case of Wilson’s fermions. Then we multiply by (—1)%

9

(—=1)4, (=1)*T4 or 1, respectively, sum over o and use

Yo (1)t =166, (4.48)

[0}

Subsequently we take the trace with respect to color indices and obtain for the staggered

propagator’s dressing functions

Alg) = 55 ((‘f])) oV Z e 2 () kit Ga(a)]. (4.492)
Ai(q) = g ((‘f])) . 6N a Z 1)% ks tr [Gal(q)] (4.49b)
Ag(q) = é ((Z)) i Z e ZZ 1)+ by tr (G (q)] (4.49¢)
Bp(q) = 113;73((5)) 6N, (4.49d)

An equivalent decomposition of the staggered quark propagator in Landau gauge was performed
n [14].

4.5 Summary and pseudocode

As a summary of the present chapter we review the construction of the Coulomb gauge quark
propagator on the lattice, in quenched approximation, within a short program in pseudocode,
see Algorithm 4.1. It is clear that these few lines of code only represent the very basic steps
and are not comparable to a complete computer program. Therefore, Algorithm 4.1 exclusively
serves as an overview and repetition of the main steps in the calculation, in particular, all

subroutines and parallelization issues are passed over.
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Algorithm 4.1 Calculating the dressing functions of the quark propagator

read parameters from file
define and initialize a lattice, gauge field, random number generator etc.
define lattice momenta p,, cf. (4.29)

for all n,u do
set U, = 1 {gluon interaction off}
end for

invert Dirac operator to obtain tree-level quark propagator

10: Fourier transform tree-level quark propagator

11: extract fermion lattice momenta k,, (p)

12:

13: for i =1 to Nequilibrate do

14:  heat bath pass on gauge fields {bring configuration into equilibrium}
15: end for

16:

17: {Monte Carlo integration}

18: for n = 1 to number of Monte Carlo steps do

19: for i = 1 to Ngiscarded dO

20: heat bath pass on gauge fields {update config.}

21: end for

22:  {Fix the Coulomb gauge}

23:  for T = Tgart to Topg do

24: simulated annealing {cool config. with respect to gauge functional value F}
25:  end for

26:  while Coulomb gauge not satisfactory reached do

27: overrelaxation

28: end while

29:  fix residual gauge

30: invert Dirac operator to obtain quark propagator

31:  Fourier transform quark propagator

32:  extract dressing functions

33: end for

34: do statistics, i.e., average over results and calculate Jackknife errors [41]
35: print results




Chapter 5

Results

In this chapter we will present our findings for the Coulomb gauge lattice quark propagator.
We will start by comparing the outcomes from the propagator with Wilson fermions to the
propagator using staggered Fermions with Kogut—Susskind (KS) and Asqtad action. After
shortly discussing the sensitivity of the propagator on Gribov copies, we will investigate
renormalization of the propagator and prove that the static Coulomb gauge quark propagator
is renormalizable. Finally, we will introduce dynamical quarks into our simulation and analyze
the effects they have on the quark propagator. In between we detect that our results seem not
to be strongly affected by finite volume and finite lattice spacing effects.

Throughout this work we use the C++ library FermiQCD by Fermilab [40] which is a toolbox
containing classes, functions and algorithms for lattice quantum field theory computations.
FermiQCD is set on top of Matrix Distributed Processing (MDP) [42] which, on the other hand,
provides an interface to the Message Passing Interface (MPI) in order to enable the user to

write parallel code.

5.1 Quenched approximation

We generated three different sets of gauge configurations using Cabibbo-Marinari’s pseudo heat
bath algorithm [33] with the gauge action (3.76),

SqlU] = % DN Retr[l - Uw(n)], (5.1)

€ neAp<v

where we introduced a common shorthand, the inverse coupling = 2Nc/g2. In QCD, the

number of color charges is N, = 3 and thus § = 6/42. 'We chose three different values for

45
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the inverse coupling § which is accompanied by three different lattice spacings a; in order to
obtain the same physics at different coupling strengths one has to adapt the lattice spacing:
this connection is described by the renormalization group equations [43]. For a given value of
the inverse coupling, one has to set the scale, i.e., determine the lattice spacing, by making
contact to physical observables. This can be done, for instance, with the static quark potential
and in particular the Sommer parameter [44]. We set the scale for our values of [ using
the parametrization of a(f3), 5.7 < 8 < 6.92, by Sommer and Necco [45]. The parameters of
our gauge configurations are summarized in Tab. 5.1, there, N¢onse denotes the number of

configurations we generated, hence the number of samples in the Monte Carlo integration.

Jé] Neonfig L*xT a La Ta

5.7 94 16 x 32 0.170 fm 2.72fm 5.44 fm
6.0 108 16°x 32 0.093 fm 1.49 fm 2.98fm
6.5 131 16%x 32 0.045 fm 0.72fm 1.44fm

Table 5.1: Parameters of the configurations in quenched approximation.

We start our simulation with a cold start, i.e., we set all gauge links to the identity. Subse-
quently, we perform 2500 equilibrating sweeps, cf. Nequilibrate in Algorithm 4.1, and thereafter
we apply Ndiscarded = 250 updating sweeps before picking the first configuration, followed by,
again, 250 updating sweeps before picking the next configuration. After picking a configuration,
we fix it to the Coulomb gauge with an accuracy of € = 10712, see (4.15), and thereafter fix the
residual gauge by either the integrated Polyakov scheme or the integrated maximal tree scheme
that we introduced in Sect. 4.2.2.

5.1.1 Wilson fermions

We begin studying the quark propagator using Wilson fermions on the set of gauge configurations
for which 8 = 6.0, see Tab. 5.1, and fix the residual gauge using integrated maximal trees.
We set the hopping parameter « to 0.124 to be sure not to get conflicted with exceptional

configurations.*

When one wants to determine the corresponding dimensionless bare mass
7 = ma, one may be lead to simply solve x for M, cf. (4.8), but the parameter M does not
directly correspond to a bare mass for Wilson fermions. The origin thereof lies in the fact that
the Wilson term explicitly breaks chiral symmetry. The pion is believed to be the Goldstone

boson [46] of chiral symmetry breaking and hence its mass M, should vanish for zero bare

1 Certain fluctuations of the gauge fields may lead to small eigenvalues of the Dirac operator and thereby make
the numerical inversion problematic. It can be shown that for x < 1/8 there are no exceptional configurations
[20, 24].
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quark mass 7. This will happen for a certain value of x, called critical value,

1

=— . (5.2)
2M,. + 8

Ke

Therefore, a possible definition for the bare quark mass arises as 1 = M — M,, or equivalently
1/1 1
m:() (5.3)

The value of k. clearly depends on the inverse coupling 8. For our gauge configurations with
B = 6.0, k. is approximately 0.1352 [47] and thus the bare mass i = 0.334. In physical units
this corresponds to m ~ 707 MeV, see (A.5).

Tree-level

To get started, we investigate the quark propagator at tree-level. We extract the functions C,,(p),
that we expect to coincide with the lattice fermion momenta, from the tree-level propagator as

depicted in Sect. 4.4.1. They are plotted against the discrete momenta pa in Fig. 5.1. As can
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A" a a"a
a T2 aTa%a o8 | P .
14 F Al atatalia 7 : x b
Ay, A A T, A M a .
12 | AA A A M4 A MAA s 0
- A, A A a, A A aa _ X A
= AA A A A  MAMAA A M = 0.6 7
£ 1t AA A A A A MAA A A M < .
o at A 4 a A4 A O X \A
08 L A A A A A A A A v
A A L 4 e A LA 0.4 .
06 1 A A A A A A e A
04 a P A a A R 02}
0.2 1 N A
0 L L LA L A L A 0 L L L L L L .
0 1 2 3 4 5 6 0 0.5 1 1.5 2 25 3
Ipla [p4la

Figure 5.1: Lattice momenta extracted from the tree-level propagator using Wilson fermions.

be seen, the data for Cy(p) perfectly agrees with the fermion lattice momentum k4a = sin(pga),
what serves as a consistency check. The data for |C(p)| = 1/>; C?(p) does not show the
same smoothness, this is very natural, though, since the x-axis combines three momenta,
Ipla = /3, pia, and obviously, these artifacts will vanish when we separate out such three-
momenta for which the magnitude of the various components differs greatly. Momenta for
which all components are of the same magnitude lie close to the diagonal of momentum space.
We will only take such momenta into account and hence we perform a so-called cylinder cut on

our data and thereby take only these momenta into account which lie within a certain distance
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to the diagonal in 4-dimensional momentum space. In addition, the cylinder cut is expected to

minimize finite lattice spacing artifacts, cf. [15, 48]. We define the distance to the diagonal as
Ap = |p|sinf(p), (5.4)
where 0(p) is the angle between the diagonal and p, i.e.,

1

cosf(p) = L -n, n==(1,1,1,1). (5.5)
| 2

We will select those momenta which lie within a cylinder of radius equal to one unit of spatial

momentum, i.e., those momenta for which Apa < 27/L. The effect of this cut on the fermion

lattice momenta functions can be seen in Fig. 5.2. As expected, this cut clearly removes the

artifacts for |C(p)| while the data for C4(p) remains unchanged.
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o 5 ;
o 08 B . - ‘ A
R N 0.4 .
06 N p N
04 a A ozl
0.2 + | ‘ ,*
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0 1 2 3 4 5 6 0 0.5 1 15 2 2.5 3
Ipla Ip4la

Figure 5.2: Cylinder cut lattice momenta from Wilson fermions.

As a further consistency check, we extract and plot the dressing functions Ago) (p), A§°) (p),
A((io) (p) and BY (p) at tree-level, they are shown in Fig. 5.3. We see that the spatial and
the temporal components are simply one for all momenta, as is manifest from the tree-level
propagator (4.30). Unsurprisingly, the mixed component equals zero throughout the momentum
range, up to a few artifacts in the deep infrared (IR) and ultraviolet (UV).! The plot for the
massive component B,(,?) (p) is more interesting, it nicely shows the shape of the Wilson term
M (p) (3.40) to which it equals at tree-level. Therefore, everything is consistent and exactly as
expected at tree-level and we are ready to continue investigating the quark propagator under

the influence of the gluon fields.

1 IR/UV because small/large momenta are equivalent to long/short wave-lengths.
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Figure 5.3: Dressing functions of the Wilson type quark propagator at tree-level.

Beyond tree-level

We now turn on the interactions with the gluons and study the derivation of the dressing
functions from their tree-level forms. In Fig. 5.4 we show all four dressing functions, with
the same parameters as before, calculated from the interacting propagator via Monte Carlo
integration. The errors throughout this work are of Jackknife type [40, 41]. We see that the
scalar function A4(p) shows non-trivial behavior when we couple gluons to the quark fields,
although the derivation from one is relatively small, whereas A;(p) now lies at around 0.3 and
therewith much lower than at tree-level. The Monte Carlo integration result for the mixed
component A4(p) points towards a striking observation, the speculative term iv;k;y4ksa® Ag(p)
seems not to exist even beyond tree-level. A4(p) shows quite some noise in the IR and the
UV, though we already saw artifacts in this region at tree-level.! The massive component
exhibited a non-trivial shape already at tree-level, due to the Wilson term, and since we are
interested in the derivation from tree-level, we divide By, (p) by its tree-level form. The result of
this tree-level correction is depicted with open circles (blue) in Fig. 5.4. This correction nicely
reveals the (non-perturbative) effect of mass generation in the IR. In the UV, on the contrary,
the scalar function B,,(p) goes asymptotically to one due to the asymptotic freedom of QCD.

In the following we investigate the discrete symmetries of the propagator in order to average
over these to increase statistics. First, note that QCD and thus the propagator are invariant
under parity transformations, S(—p) = S(p), which is valid for all four-momenta components
and thus results in a 2* degeneracy. Furthermore, we expect the lattice propagator to be subject
to a residual rotational symmetry inherited from its continuum counterpart. The rotational

symmetry, on a lattice with L # T, reduces to the cubic point group. This symmetry manifests

1 We considered this term without the factor i as well, it is zero, too.
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Figure 5.4: Dressing functions.

itself for the propagator as
S(p1,p2:p3:04) = S(PispjsPr:Pa); (5.6)

where i, 7, k is one arbitrary permutation of 1,2,3 out of the 3! possibilities. Following these
lines of argument, for a given discrete momentum p, we average the dressing functions evaluated
at all 243! = 96 momenta which are related through parity and cubic symmetries to p. Fig. 5.5

clearly shows that this procedure reduces the errors from statistical uncertainty.

5.1.2 Staggered fermions

We proceed to the study of the quark propagator using staggered fermions, on the same set
of gauge configurations (§ = 6.0) with the same residual gauge fixing scheme. For staggered
fermions one can tune the bare mass parameter itself while for Wilson fermions we had to set
up the parameter « and therewith determined the value of the bare mass. We set the mass

parameter to m = 0.334 and therewith we put on the same bare mass as we did for Wilson
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Figure 5.5: Dressing functions with cubic and parity symmetry averaging.

fermions. Nevertheless, comparison of these two different approaches to lattice fermions have
to be considered with care: as we discussed in Chap. 3, the ansatz by Kogut and Susskind
describes four degenerate tastes of fermions whereas the problem of fermion doubling for Wilson
fermions is only resolved in the continuum limit. As we did for Wilson fermions, we first check
our code and our analysis for consistency by considering the tree-level quark propagator. In
Fig. 5.6a we show the fermion lattice momenta of the KS action extracted from tree-level.
The difference to the case of Wilson fermions is obvious, the momenta range is smaller since
staggered fermions take only momentum values within the inner half of the BZ which, by
construction, circumvents the problem of fermion doubling. The fermion lattice momenta of
staggered fermions are bijective, thus we may use the more adequate fermion lattice momenta
k,a itself on the abscissa and plot the dressing functions against the latter. At tree-level, the
spatial component of the dressing functions is one for staggered fermions as well, up to a few

slight artifacts of the order 0.05 in the IR. The temporal component equals one perfectly
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Figure 5.6: Staggered fermions: tree-level behavior.

while the mixed component is exactly zero. The massive component is constant at a value of
two-times the bare mass M which stems from the fact that KS fermions have an effective lattice
spacing of 2a as we encountered in the construction of staggered fermions in Sect. 3.3.2. In
consequence, we will have to divide the massive component by 2a when adopting physical units.

Moving on to the study beyond tree-level, we first show the results of the scalar functions
without any cut but with cubic and parity averaging, see Fig. 5.7. This may be compared
to Fig. 5.8, which is exactly the same data but with an additional cylinder cut to show once
more the effect of taking only those values of pa into account which lie close to the diagonal
in momentum space. When we compare these data plots to the previous plots for Wilson
fermions, we detect, first of all, that the spatial component As(p) is greater than one for low
to medium momenta and asymptotically goes to one in the UV. This seems to be much more
reasonable since we expect the propagator to show non-trivial behavior in the low to medium
momentum region and due to asymptotic freedom we expect it to merge into its tree-level form
for large enough momenta. The function A;(p) lies even lower than for Wilson fermions and
is almost constant. The massive function B,,(p), for staggered fermions, has a very similar
shape as As(p). In comparison to Wilson fermions it increases about ten times less in the IR
which seems to be more accurate. From staggered fermions, it is even more obvious that the
speculative mixed component does not exist. The larger errors for A4(p) with cylinder cut
opposed to without cylinder cut originate from the fact that we average over less cubic and
parity symmetric data points when applying a cylinder cut. Since it is manifest that A4(p)
vanishes, we will not further consider it in this work. Note that the sets of data points in
Fig. 5.7 which lie (approximately) on parallel straight lines with positive slope for As(p) and

B,,,(p) belong to momenta with the same energy ps. Hence the slope of these lines is coupled
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to the time dependence of the scalar functions.
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Figure 5.7: Dressing functions from staggered fermions with cubic and parity averaging.

5.1.3 Improved staggered fermions

So far, we have shown the dressing functions from the staggered quark propagator obtained
from the KS action (3.49) which we now contrast to the dressing functions from the Asqtad
action for which the Dirac operator is given in (3.58). At tree-level, see Fig. 5.6b, the only
difference opposed to KS fermions is the fermion lattice momentum which, for the Asqtad

action, is given by
R 1
k, = sin(q,) (1 +5 Sing((j#)> : (5.7)

We will use this momentum, extracted from tree-level, on the abscissa for plots of the scalar
functions. Note that lattice fermion momentum from the Asqtad action stretches further into
the UV: whereas the maximal momenta for the KS action is 2/a, with the Asqtad action one
reaches 7/6a.
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Figure 5.8: Cylinder cut dressing functions from staggered fermions with cubic and parity
averaging.

A comparison of the scalar functions obtained from the KS action opposed to the Asqtad
action is given in Fig. 5.9. For both actions we used the same set of gauge configurations
(6 = 6.0) and the same residual gauge fixing scheme (maximal trees), the bare mass was set
to ma = 0.1, for both actions, which corresponds to 212 MeV. We observe that the function
As(p) from the Asqtad action lies slightly above the one from the KS action whereas for the
massive component, By, (p), it is the other way round. It is remarkable that for both actions,
the function Ay(p) lies higher and has a significantly steeper slope as in Fig. 5.8 where the
mass was chosen to be 707 MeV. The main advantages for the propagator when switching to
the Asqtad action are improved rotational symmetry and better asymptotic behavior for the
renormalization function as was found in [16] in Landau gauge. The improvement of rotational
symmetry is not crucial to us since we average over cubic symmetry but we will benefit from

the enhanced asymptotic behavior when studying renormalization.
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Figure 5.9: Comparison of the KS and the Asqtad action.

5.1.4 Gribov copies

We close this section by giving a few remarks on the dependence of the quark propagator on the
arbitrariness in the gauge fixing process on the lattice. Remember that the gauge functional
(4.14) has many local maxima called Gribov copies and therefore the requirement to fix the
gauge in such a way that (4.14) gets maximized, is not unique. In order to study the effects of
the Gribov copies on the propagator, we consider a set of SU(2) gauge configurations consisting
of one hundred 122 x 24 samples, each generated with the inverse coupling being 8 = 2.5. We
made 25 copies of each configuration and fixed all of them to the Coulomb gauge, then we
compared the functional value (4.14) of all copies for each configuration and kept only the one
which achieved the highest score. In another run we fixed each configuration to the Coulomb
gauge and accepted it immediately, for comparison, since this is the way we ordinarily fix the
gauge. We use the gauge group SU(2) for this analysis since it is much cheaper for SU(2) to fix
the gauge in comparison to SU(3).
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of the dressing functions.

In Fig. 5.10 we compare the dressing functions of the Wilson type fermionic two-point function

which we obtained from this “advanced gauge fixing scheme” to the ones which we encountered

with our ordinary procedure. Moreover, a bar chart is shown in Fig. 5.10, there we compare

the functional values we reached, for each step ¢ of the Monte Carlo integration, with these

two different gauge fixing procedures. As can be seen, for the massive component there is no

difference at all, for the temporal part the two functions differ slightly within the error bars

and for the spatial function there is a small discrepancy in the UV. The bottom line is that we

do not expect our data to be seriously affected by Gribov copies.

5.2 Renormalization

The aim of this section is to check the renormalizability of the Coulomb gauge lattice quark

propagator. The introduction of a space-time lattice to a quantum field theory serves as an UV
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cutoff: the largest available momentum on the lattice is 7 /a. Thus the lattice is a regulator of the
theory — it renders all path integrals finite — and the lattice quark propagator is the regularized
propagator S™&(a;p). The Landau gauge lattice quark propagator is renormalizable within the
standard momentum subtraction scheme (MOM) [12] and hence is related to the renormalized
quark propagator S(u;p) through the quark wave-function renormalization constant Zs which

depends on the cutoff ¢ and on the renormalization point p,

58 (a;p) = Za(p; a)S(p;p). (5.8)

In a renormalizable theory like QCD, when performing the continuum limit, a — 0,! the

renormalized quantities become independent of the cutoff a.

5.2.1 The dynamic propagator

To investigate renormalizability of the Coulomb gauge quark propagator, we make the following

ansatz for the renormalized propagator

S(1;p) = (ivikiaAs(u; p) + ivakaady(1;p) + B(psp)) ™' (5.92)

= Z(1; p) (inikia + inaksac(p) + aM(p)) ™", (5.9b)

thence Z( . )_A—l( . ) ( )_ At(M;P) M( )_ Bm(:u;p) (5 10)
)= R UBP) )= ) Pr= A p)a’ '

where Z(p;p) and a(p) are dimensionless and M (p) has dimension of mass. The MOM scheme

has the renormalization point boundary conditions

Z(pip) =1, alp) =c(p), M(p)=m(p), (5.11)

where in an asymptotically free theory like QCD, for a large enough renormalization point
p, m(p) becomes the running quark mass and c(u) is expected to go to one. The Lh.s. of
(5.8) is independent of the renormalization point, thus the r.h.s. must be equal for different

renormalization points p and g’ and in consequence

= ,: . (5.12)

1 One actually lets 8 — oo when performing the continuum limit.
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Eq. (5.12) states that a change of renormalization point is just an overall rescaling of the renor-
malization function Z(u;p), while a(p) and M (p) must be renormalization point independent.
In the following we will write Z(p) instead of Z(u;p) for ease of notation, nevertheless the

renormalization point dependence of the renormalization function has to be understood. We
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Figure 5.11: Scalar functions for different § using integrated

maximal trees.
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Figure 5.12: Scalar functions for different § using the integrated Polyakov gauge.
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Figure 5.13: Scalar functions for different § without fixing the residual gauge.

compare the functions Z(p), a(p) and M (p) for different values of 3, thus for different cutoffs
a. We tuned each dimensionless bare mass so that the physical mass matches for all g3, see
Tab. 5.2. We make this comparison for the two different residual gauge fixing schemes since we

expect the residual gauge fixing scheme to influence the time dependence of the propagator. In
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I6) a ma m

5.7 0.170fm 0.1827 212 MeV
6.0 0.093fm 0.1 212 MeV
6.5 0.045fm 0.0484 212 MeV

Table 5.2: Masses for the various f.

Fig. 5.11 we show the three scalar functions with the residual gauge fixed by the integrated
maximal tree scheme. In Fig. 5.12 the same functions are shown for the integrated Polyakov
scheme and in Fig. 5.13 we show, in addition, the results of a run where we left the residual
gauge unfixed.

When looking at the renormalization functions Z(p) for the three different ways how we
fixed the residual gauge freedom, it becomes apparent that the sets of data points which lie
(approximately) on parallel straight lines have different slopes for the different residual gauges.
Especially, in the case of no residual gauge fixing, the slope vanishes which indicates that
time-dependence of the Coulomb gauge quark propagator vanishes when one leaves the residual
gauge unfixed.

Without further investigating the functions Z(p) and M (p) we want to foreground the
behavior of a(p): for the integrated maximal tree gauge Fig. 5.11 and for the integrated
Polyakov gauge, for all 5 seems a(p) be either independent of the momentum or slightly fall
down for higher momenta. Without having fixed the residual gauge freedom, see Fig. 5.13, a(p)
is close to zero for 3 = 5.7 and § = 6.0 whereas for 3 = 6.5 it is even less than zero which gives
rise to that a(p) indeed equals the average over the gauge group and thus is zero when leaving
the gauge freedom with respect to time-dependent gauge transformations unfixed.

The very crucial observation of this section is that a(p) is clearly not independent of the
renormalization point and therefore the Coulomb gauge quark propagator, as it stands, is not

renormalizable. We continue by exploring the static Coulomb gauge quark propagator.

5.2.2 The static propagator

Remember that we decomposed the inverse propagator into a spatial and a temporal component

and dressed it with scalar functions according to

S7H(p) = inikiaAs(p) + ivaksaAy(p) + Bm(p) (5.13)
_ o Aslp) A(p) | Bm(p)
= Z%kza% + 274k4ap2(p) + D2(p) (5.14)
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or equivalently

S(p) = —ivikiaAs(p) — ivakaaAr(p) + Bm(p) (5.15)
, As(p) . Ai(p) | Bm(p)
= —ivik;a—— — 1Y4kaa + , 5.16
ki Doy~ D) T D) (5:16)
where we defined the denominators as
D*(p) = k*a®A%(p) + kia® A7 (p) + B, (p), (5.17)
D*(p) = kK*a> A%(p) + kia® A7 (p) + By, (p). (5.18)

Now we integrate over the energy k4 to obtain the static propagator. In analogy to Chap. 3,

we will write [T < dps

to indicate integration over k4, despite that on the lattice, integration is
actually performed by averaging over ky, i.e., 1/T Zk4 for all ka. When we denote the static

propagator with S(p), we obtain

= dp
S (p) :i%kia/ As(p) +/ g (5.19)
dp4 As(p) dﬁ B, (p)
= iv;ikia / 27 D2(p) LW o D2(p) (5.20)
and

_ ) T dD T dp

S(p) = _Wikia/ ﬁAs(p) +/ %Bm(p) (5.21)
dp4 As(p) g @Bm(p)

~ivika [ 2 D [ o (5.22)

Note that the temporal function A;(p) is even and thus the product ks A, (p), integrated from
—7 to m, vanishes.
From the static propagator we extract the static renormalization function Z(p) and the static

mass function M (p),

- R -1 ™ dpy
20 = ([ Tawm) . M(p):ff;%;m (5.23)

Details of the extraction of static functions Z(p) and M (p) from the static propagator are
given in Appendix A.6.

The outcome for the static functions Z(p) and M (p) for different 3 and different residual
gauge fixing procedures are given in Fig. 5.14 — Fig. 5.16. It has to be pointed out that a
cylinder cut is not necessary for the data extracted from the static propagator. We performed

a cone cut, though, on the data for Z(p): the cone cut eliminates points in the IR which are
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Integrated maximal tree gauge | Integrated Polyakov gauge | Residual gauge unfixed

5.7 | 0.170fm - 0.65 0.75 0.615
6.0 | 0.093fm - 0.825 0.886 0.805
6.5 | 0.045fm | 8GeV 1.062 1.018 1.086

Table 5.3: Renormalization constants Zs(a; i).

not reliable on lattices with small physical volumes [48]. The function M (p) is uncut. As the
renormalization point of Z(p) we choose a momentum value of 8 GeV, for all three residual
gauge fixing schemes, which determines the renormalization constant Zs(a; ) for 5 = 6.5. For
B equal to 6.0 and 5.7 we precede the other way round; we choose a renormalization constant
Zs(a; ) in such a way that Z(a;p) transitions as smoothly as possible from one 3 to the next.
The best result obtained in this way is for the integrated Polyakov gauge, where the different
Z(a;p) merge into a single smooth curve. The renormalization constants Z3(a; p) for all curves

are summarized in Tab. 5.3.
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Figure 5.14: Functions from the static propagator, residual gauge freedom fixed using inte-
grated maximal trees.

We find that the mass function M(p) of the Coulomb gauge lattice quark propagator is
renormalization point independent. M (p) nicely shows a dynamical mass generation in the
IR and the slope increases strongly at around 3.5 GeV. To summarize, we find that the static
Coulomb gauge lattice quark propagator is multiplicative renormalizable whereas the dynamic

propagator is not.
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Figure 5.15: Functions from the static propagator, residual gauge freedom fixed using the
integrated Polyakov gauge.
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Figure 5.16: Functions from the static propagator, residual gauge freedom not fixed.

5.3 Unquenching

We downloaded two sets of gauge field configurations provided by the MILC Collaboration

[34] via the Gauge Connection.!

Both sets are of equal size and lattice spacing. The only
difference between them is that one includes Ny = 2 + 1 flavors of dynamical quarks: two
degenerate light quarks of mass 11 MeV and a strange quark of mass 79MeV [49]. These
configurations were generated using a tadpole and Symanzik improved gauge action and, to

incorporate the dynamical fermions, the Asqtad action, for details see [34]. The parameters of

1 http://qcd.nersc.gov/
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both configurations are summarized in Tab. 5.4. We gauged both configurations to the Coulomb

gauge with a precision of € = 1076 and left the residual gauge unfixed.

Ny Neamwiz L*xT ! ‘ My /d O ‘ My /d msa
quenched 79 203x 64 | 0.125fm 00 00 00 00 2.5fm | 8fm
241 88 203x 64 | 0.125fm 0.007 11MeV | 0.05 | 79MeV | 2.5fm | 8fm

Table 5.4: Parameters of the configurations by the MILC Collaboration.

5.3.1 Finite volume effects

Before we begin studying the effects due to the sea quarks, we use the quenched set from the
MILC Collaboration to investigate sensitivity of the propagator on the finite size of the lattice.
We want to compare the mass function obtained from the quenched MILC configurations with
the mass function from one of our 163 x 32 lattices. To this effect, we take the set of gauge
configurations with § = 6.0 and tune the mass parameters on both sets so that they match
within physical units. In Tab. 5.5, we list details of the physical volumes of the two lattices

under investigation and the bare mass parameters.

203x 64 0.125fm 2.5fm 8.0fm 0.04 63 MeV
163 x 32 0.093 fm 1.49 fm 2.98fm 0.0298 63 MeV

Table 5.5: Details of the analysis of finite volume effects.
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Figure 5.17: Mass function M (p) from different lattices.

We observe, see Fig. 5.17, that the momentum range of these two lattices overlaps in the
range from about 0.8 GeV to approximately 3.2 GeV. Whereas the mass functions differ only

slightly in the lower region of the overlapping range. Seen as a whole, the two functions nicely
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merge into a single smooth curve. Thus, we are lead to conclude that finite volume effects,
as well as finite lattice spacing effects, are of negligible influence. Additionally, the agreement
of the two mass functions shows that fixing the Coulomb gauge with a precision of £ = 1076,

which is the best we could achieve for the MILC configurations, suffices.

5.3.2 Effects of dynamical quarks

We computed the static Coulomb gauge quark propagator on both gauge field configuration sets
form the MILC Collaboration with the same five bare quark masses, ranging from 14-95 MeV.

A list of all bare masses we used, in lattice units and in physical units, is given in Tab. 5.6.

006 0.04 002 001 0.0087
mMeV] | 95 | 63 | 32 | 16 14

Table 5.6: Various bare masses for the analysis of unquenching.

The mass function M (p) from both, the quenched approximation and full QCD, for the various
bare masses is shown in Fig. 5.18 and the corresponding renormalization function Z(p) is given

in Fig. 5.19. Furthermore, we show a direct comparison of the two scalar functions from the
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(a) Quenched approximation. (b) Full QCD.

Figure 5.18: Mass function M (p) for various masses ma.

quenched sets versus the unquenched sets in Fig. 5.20. There, we chose the bare mass for the

quenched configurations as ma = 0.01 and for the configurations with dynamical quarks as

1

ma = 0.0087, so that the physical running mass' matches, approximately. As we will reveal

1 The running mass is obtained for very large momenta, when, due to asymptotic freedom, the coupling strength
goes to zero. The running quark mass, or also called current quark mass — or dressed mass — is the mass
which is obtained in experiments.
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Figure 5.19: Renormalization function Z(p) for various bare masses ma.

3.5

below, in full QCD, a bare mass results in a larger running mass, opposed to the same bare

mass within the quenched approximation. It should be stressed again that the only difference

between these two sets of configurations is that one has 2 4+ 1 flavors of dynamical quarks

and the other has not. The first observation we make is that the renormalization function
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Figure 5.20: The effects of unquenching.
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(b) Full QCD.

35

agrees well for all bare masses and has a very similar shape for quenched and unquenched

configurations. Comparing the mass function from full QCD to the one from the quenched

approximation, we cannot detect a significant difference with the naked eye. It seems, that more

mass is dynamically generated when sea quarks are available, this will be further investigated

below.
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5.3.3 The chiral limit

We want to extrapolate the mass function towards zero bare mass, this limit is usually referred
to as chiral limit, since the Dirac operator becomes chirally symmetric for vanishing bare quark
mass, for details see Appendix A.3. We use a simple linear extrapolation: for all p, we fit the

data of the mass function, which we assume to be linear in m, with the ansatz
Mp(m) = am + . (5.24)

The extrapolation point Mp(m = 0) = 3 corresponds to the chiral limit for the corresponding
value of p. See Fig. 5.22a, for the chiral limit of M (p) in the quenched approximation and
for full QCD. The chiral extrapolation of the mass function stays clearly above zero for the
momentum scale we consider. Although the shape of the function gives rise to an asymptotic

behavior towards zero.

5.3.4 Fitting the mass function

1

Our goal is to extract the running mass and the constituent quark mass," as a function of the

bare mass, from the quark propagator’s mass function. Consider following model function,

my (m) my(m)

Mlpm) = 1+ 08 log (e+25) 7 log (e+52)"

(5.25)

where m,.(m) is the running mass, which obviously depends on the bare mass m. The constituent

quark mass can be found by considering the mass function for zero momentum,
M(0,m) = my(m) + m,(m). (5.26)

We fitted the model function M (p,m) to our data, whereby m,.(0) = 0 was set as a constraint.
The result thereof is given in Fig. 5.21, for the quenched and the unquenched propagator. In
Fig. 5.22b, we compare the chiral limit for quenched and unquenched configurations including
the fitting function. The corresponding fit parameters are given in Tab. 5.7 and Tab. 5.8. The
scale A of the fit coincides well with the scale Agcp, as expected. What immediately attracts
the attention of the observer when looking at the fits for the mass function, with and without
dynamical quarks, Fig. 5.21, is, that the constituent quark masses, for the various bare masses,

tend to be closer together in full QCD than in the quenched approximation.

1 The constituent quark mass is one third of the nucleons mass, i.e., the mass that a quark adopts within the
nucleon.
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Figure 5.21: Modelling the mass function.
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Figure 5.22: Quenched approximation vs. full QCD: chiral limit of M (p).

This can be explored in more detail when considering Fig. 5.23a, where we plotted the

constituent quark mass as a function of the bare mass: while the constituent quark mass from

the quenched approximation increases almost linearly with the bare quark mass, the constituent

quark mass in full QCD indicates an asymptotic behavior. The latter states, that in full QCD,

we are lead to assume that above a certain bare mass, or dressed mass since they are related

linearly according to Fig. 5.23b, the constituent quark mass will be mainly due to the dressed

mass and dynamical mass generation will play a minor role. This can be underlined with

Fig. 5.23c: m,, being the difference between the constituent quark mass and the running mass,

is a measure of how much mass is dynamically generated. As Fig. 5.23¢ shows, for our heaviest

valence quark, dynamical mass generation vanishes. This is also in accordance with nature,
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dynamical | 1.57(1) | 0.59(1) 0.80(1)

quenched | 0.98(1) | 0.595(10) | 0.445(10)

Table 5.7: Fit parameters b, A, ~.

004 002 00l 00087
my [GeV] (dynamical) |  0.38(2) 0.38(1) | 0.37(1) | 0.30(1) | 0.155(10) | 0.00(5)
my [GeV] (quenched) | 0.32(2) 0.33(1) | 033(1) | 031(1) | 027(1) | 0.23(1)
m, [GeV] (dynamical) | 0 (constr.) | 0.036(1) | 0.046(1) | 0.13(1) 0.29(1) | 0.45(1)
m, [GeV] (quenched) | O (constr.) | 0.0205(10) | 0.026(1) | 0.069(1) | 0.155(15) | 0.24(1)

Table 5.8: Fit parameters m, (m) and m,(m).

the mass of charmonium, e.g., is not much larger than two times the mass of the charm quark.
Moreover, from Fig. 5.23c, we can obtain that dynamical mass generation, as a function of the
physical dressed mass, is similar for quenched and unquenched QCD.

It is also remarkable, that the constituent quark mass is indeed approzimately one third of the
mass of the proton. On third of the mass of the proton would be ~ 310 MeV, thus our values of
320 MeV (quenched) and 380 MeV (unquenched) are slightly above. It has to be pointed out,
though, that our light sea quarks are not as light as the physical up and down quarks. That
might partly account for the difference. Another uncertainty stems from systematic errors like

finite cutoff effects and the lack of a sufficient amount of data points in the deep IR.

5.3.5 Comparison to Landau gauge

In [17], a related study of unquenching effects of the lattice quark propagator was performed in
Landau gauge. There, almost the same gauge field configurations from the MILC Collaboration
were used. The only difference in their configurations was, that the light sea quarks were slightly
heavier, ma = 0.01. Furthermore, the same Asqtad staggered fermions were used. Thus, this
should serve as an appropriate environment for comparison.

One advantage of Landau gauge is, that since one does not integrate out the energy, one
obtains more data points in the deep IR. In general, the authors of [17] found a slightly
higher mass generation in the quenched case as well as unquenched in comparison to our study.
Moreover, they found in particular, that mass generation is slightly screened by dynamical
fermions which we cannot confirm on the basis of our work in Coulomb gauge. The investigation

of this discrepancy could be the basis for further studies.
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Figure 5.23: Constituent and running masses as functions of the bare mass.






Chapter 6

Conclusion

In this work, we decomposed the Coulomb gauge quark propagator into a spatial, a temporal
and a massive part, as well as into a speculative mixed part. We showed how the effects of
the interaction of the propagator with the gluon fields can be described by scalar momentum-
dependent functions, attached to the several parts of the propagator. The extraction of these
functions from the lattice quark propagator for Wilson fermions and Kogut—Susskind fermions
have been derived.

We found that the speculative mixed component is non-existent. For the remaining three
scalar functions, staggered fermions have shown to be superior to Wilson fermions in describing
dynamics beyond tree-level. The Asqtad action was found to bring further improvement thereon.
We analyzed the ambiguities in the gauge fixing process due to Gribov copies and found that
their influence on the quark propagator is small. Two different schemes of residual gauge fixing
were compared and it was detected that their impact is only reflected in the time-dependence
of the propagator. Moreover, the static propagator is insensitive to which residual gauge is
chosen, even if the residual gauge is left unfixed. The renormalizability of the quark propagator
was tested and was found to be given only for the static propagator. The influence of the finite
lattice volume and the finite lattice spacing on the propagator was investigated and found to
be small.

We explored the quark propagator on gauge field configurations containing 2+1 flavors of
dynamical quarks. It was found that the quark propagator is not strongly altered by sea quark
effects. We extrapolated the mass function to the chiral limit and investigated the effect of
dynamical mass generation and its dependence on sea quarks. It was found that in full QCD,
dynamical mass generation ceases with increasing running mass.

The natural continuation of the study of the Coulomb gauge lattice quark propagator is to
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extend the computation of the mass function towards larger lattices, smaller masses of the sea
quarks and various cutoff scales. Larger lattices will enable one, to further advance into the
deep IR and thereby observe the flattening of the mass function. It could also be interesting to
study the Coulomb gauge lattice quark propagator with finite temperature and finite chemical

potential.
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Appendix A

Appendix

A.1 Natural units

Throughout this work we set the speed of light ¢ = 1, as well as Planck’s constant # = 1. From

the former follows that length and time have the same dimensions,
[length| = [time]. (A.1)

Because h = 1, we obtain that the dimension of energy equals the inverse dimension of time,

[energy] = [time] L. (A.2)
Moreover, the relativistic relation between mass and energy

E% =m?ct + p?? (A.3)
yields that energy, mass and momentum have the same dimensions and, in conclusion,

[mass] = [length] (A.4)
whereas the latter reads quantitatively

1 = he ~197.327MeV fm <= 1fm~! ~ 197.327 MeV. (A.5)
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A.2 Green's integration formula

Theorem A.1. Let ¢, be two times continuously differentiable within the domain 2 C R™.
Then

/cﬁﬂw-vwz—/ﬂm¢A¢+/1ds¢mw, (A.6)
0 Q on
where 0,, 1s the derivative in the outer normal direction.

Proof see, e.g., [50].

A.3 Chiral symmetry

A.3.1 Invariance of the massless Dirac operator
We consider the fermionic action

SelbD.A] = [ d'2 (@) D(@)(a)
D(x) = v, (0, +iAu(x))

(A7)

where D is the massless Dirac operator. We define chiral rotations of the fermion fields as

V(@) = ¢ (@) = (), Pla) - Y (@) = 1Y) (A.8)

with 75 = 71727374 and @ € R. Then the Lagrangian in (A.7) is invariant under this transfor-
mation since {7s5,7,} = 0, and a mass term would obviously break this symmetry.

Define right- and left-handed projectors

(T —1s5) (A.9)

N |

1
PR:§(1+’75), P, =

which project onto orthogonal subspaces PrP;, = Pr,Pr =0, P, + Pgr = 1 and for which
YuPr = Pryp, vuPr = Pryp. (A.10)
Therewith we define right- and left-handed fermion fields

Yr(z) = Prip(x), r(r) = Pri(z) (A.11)
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and equivalently for ¢ (x). Calculate

D¢ = ¢(Pr + Pr)D(Pp, + Pr)y

= Pr (8, +iA,) PLyp + v, P (0, + iA,) Pry
+ v, Py (0, + iA,) Prtp + v, Pryp (0, + i4,) Pra (A12)
= Pryu (0u +iA,) Py + Pryutp (Oy + 1A,) PRy
+ Pryutp (8 +iA,) Pr + Pryutp (0, + iA,) Pry

= ¢ DYr, + YpDp.

Thus we see that the Dirac operator can be decomposed into a left- and a right-handed part.

A.3.2 The chiral condensate

Consider the vacuum expectation value <$R(a:)¢ L(x)>, where ¢ ()1 (x) transforms under
(A.8) as
bpl@)pr(e) — e OB Y (2) iy (). (A.13)

When the vacuum expectation value <@R(:1;)1/1L(a:)> or equivalently <@L(x)1/13(a:)> is left in-
variant under such a transformation, it must vanish. Thus the chiral condensate

(P(@)e(2)) = (Pr@)n@)) + (Dr(=)vn()) (A14)

is a measure of spontaneous breaking of chiral symmetry.

A.4 Coulomb gauge and gauge functionals

We prove that the continuum Coulomb gauge condition 9;A;(x) is equivalent to maximizing

FelAl(z4) = 23: / P tr [(G(x)Ai(x)GT(x)ﬂ . (A.15)
=1

for all x4 with respect to gauge transformations G(z) € SU(3).

Consider infinitesimal gauge transformations
Gz) = 1@ Gl (z) = e =H @) (A.16)

with € € R small and H(z) an arbitrary traceless hermitian matrix. Under this infinitesimal
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gauge transformation the gauge field A, (z) transforms as, cf. (3.62c),

Au(w) = Ay (x) ZG(JJ)Au(w)GT( ) +1(9,G(x)) G'(x)
= M@ A, () e M@ e, H(x)
= (1 +icH()) Ay(2) (1 — ieH(x)) — 0, H(x)
= Au(@) + e {i [H(2),Au(2)] — 9, H (2)} + O(c?).

(A.17)

Plugging this into (A.15) for G(x)A;(x)GT(z) and taking the periodicity of the trace into account,
which makes the contributions from the commutator vanish, yields for the transformation of

the gauge functional

3
Al(z4) = Z / & tr [A2(2) — cA(2)0iH (x) — c0,H (2) Ai(x)] + O()

— FulA)(z4) — 252/&: tr [Ai ()0, H ()] + O(2) (A.18)

= FolAl(w1) + 25 ) / B tr[(0;45(x)) H(z)] + OE),

In the last step we performed an integration by parts under the assumption that H(x) vanishes
for large x. It is now obvious from (A.18) that the gauge functional is in an extremum if and
only if ¥, 0;A;(x) vanishes.

An equivalent condition on the lattice is the prescription to extremize

Fe[U](n) _a2zz tr [G)Us() G (n +7) + Gn + DU (n) G ()] (A.19)

i=1 n

with respect to G(n), which is equivalent to (A.15) since

o2
Uu(n) = 1 +iaA,(n) — ?Ai(n) + O(a®). (A.20)

In order to see that space independent gauge transformations G(z4) leave the Coulomb gauge

undisturbed, consider a subsequent infinitesimal gauge transformation G(x4) = e’ (z4),

Ai(z) — Af(x) = Ay() + e {i[H (24),A4i(2)] — 0;H (w4)} + O(e?)

(A.21)
= Ai(z) + ei [H(z4),Ai(z)] + O(?)

of (A.18). Since 0;H (z4) vanishes and the commutator does not contribute under the trace, we

obtain

FolA")(z4) = Fo[A)(z4). (A.22)



A.5 On the connection of the dressing functions of the propagator and its inverse 87

A.5 On the connection of the dressing functions of the propagator and its

inverse

We have to prove that

23)

with
D%(p) = K2A%(p)+ ka + k3 ka + B2 (p), (A.24)
Dip) = k2A%(p)+ Z E2A%(p) + k2 Z k2 A%(p) + B2, (p) (A.25)

%

It is sufficient to show one direction, e.g., “=-", since the other direction can be shown in an

analogues way. We start by inverting the left set of equations

1 Ai(p)  As(p)  Aalp)  Bn(p)

= = = = A.
D(p)  Ap)  Asp)  Aalp)  Bm(p)’ (5.26)
so we can see that if we want (2) following from (1), we have to show that
D*(p)D*(p) = 1. (A.27)
By assumption we have
2 Aip) o Ap) 2y AdD) e Br(p) A
'At( ) D4(p)7 As( ) D4(p) 'Ad(p> - D4(p)7 m(p) - D4(p)7 ( 28)
what we may plug into D?(p) to yield
kK3AZ(p) + 30 kAL (p) + K3 Y0 kFAG(p) + Bo(0) \ 12,
( Di0p)) D*(p) = 1. (A.29)
A.6 Formulas for Z(p) and M(p)
Using Feynman’s slash notation, ¥ = ~;k; and f4 = v4k4, we have
S~ (p) = iKaAs(p) + ifaaAs(p) + Bn(p) (A.30)
As(p) At(p) Bm(p) (A31)

N ika@?(p) Hha@?(p) " D2(p)
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and
S(p) = —ikaAs(p) — iksaAi(p) + Bin(p) (A.32)
_ ipg ) Adp) | Bin(p)
= —ik D2(p) Fa D2) " D) (A.33)
where
D*(p) = k*a® A3 (p) + kia® A} (p) + B, (p), (A.34)
D*(p) = k*a® A(p) + K{a® A7 (p) + By, (p). (A.35)
Integration over ky yields (Ay(p) even function with respect to ky4)
— ika / dpa / d;;*B (p) (A.36)
dp As(p) dps Bm(p)
= ika /_ﬂ 2; D2(p) /_ﬂ2732>2(p) (A-37)
and
p) = —ikla / s 4 ) / dp413 (p) (A.38)
dp As(p) dp B (p)
= —ika / 2; D2(p) /_7r T; D2(p) (4.39)
Invert (A.36):
< —ika [T FEA(p) + [T B Bu(p)
S(p) = : P2p) : : (A.40)
A 2 2
P2(p) = K2a? (/w dzfjAs(p)> + (/W i By )) | (A1)
Invert (A.38):
T dp4 m dpa
1y = H LT BEAD) + T BB 0) i

P*(p) ’
P%(p) = k?a? (/_7; dejAs(p))Q + (/_7; d;jj[)’m(p)>2 : (A.43)
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Compare (A.36) with (A.42) to obtain
™ dpg fj dzﬂAs(p)
SPA A (p) = f=m2m TS '
L oA = =5 (A4
™ dpy 7 BB (p)
— B (p) = /7= ——=. A.
L, G Bnte) = =225 (4.43)
Compare (A.38) with (A.40) to obtain
T dﬁ4 o fjﬂ— %As(p)
/—7r 271, ”45( ) - PQ(p) ’ (A46>
™ dpy )7 B Bulp)
We write the static propagator as
5 —ika + M(p)
Slp)=2Z(p)———-+= A4
(P)=2(P) 5 5 T (p) (A.48)
S (p) = 27\ (p) (ika + M(p)). (A.49)
Compare (A.42) and (A.49):
P*(p) ™ dps -
Z = = [——— .
0= g~ (L 5A) (A.50)
fﬂ— dQL#-AS (p) fﬂ— dQL;rLAs (p)
Or compare alternatively (A.40) and (A.48), then
7 BAs(p) Z(p) 2 2 2 ™ dpa
T = Z(p) = P .
P ey 0= (e nre) [ Siae s
T dﬂB ( ) 7 T dﬂ
—r 97 Bm(P (p)M (p) “n 9 B (p)
= M =TT - A.53
Pp) K+ M2(p) P ) A
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